Zagazig University Digital Repository
Home
Thesis & Publications
All Contents
Publications
Thesis
Graduation Projects
Research Area
Research Area Reports
Search by Research Area
Universities Thesis
ACADEMIC Links
ACADEMIC RESEARCH
Zagazig University Authors
Africa Research Statistics
Google Scholar
Research Gate
Researcher ID
CrossRef
Metaheuristic Techniques in Feature Selection: A Concise Review
Faculty
Computer Science
Year:
2025
Type of Publication:
ZU Hosted
Pages:
Authors:
Journal:
International Journal of Computers and Informatics (Zagazig University) International Journal of Computers and Informatics (Zagazig University)
Volume:
Keywords :
Metaheuristic Techniques , Feature Selection: , Concise Review
Abstract:
Feature selection is an essential process in machine learning, designed to diminish the dimensionality of the feature set while preserving performance accuracy. Since the 1970s, various approaches for feature selection have been proposed, with metaheuristic algorithms being the most effective. This survey analyzes the prominent metaheuristic feature selection algorithms emphasizing their efficacy in exploration/exploitation operators, selection methodologies, transfer functions, fitness evaluations, and parameter optimization strategies. The paper provides a comprehensive literature analysis on addressing feature selection issues with metaheuristic algorithms.Metaheuristic algorithms are categorized into four types according to their behavior, with a compilation of more than one hundred listed. The paper addresses obstacles and issues in acquiring the optimal feature subset through various metaheuristic algorithms and identifies research gaps for researcher
Author Related Publications
Department Related Publications
Ibrahiem Mahmoud Mohamed Elhenawy, "BERT-CNN: A Deep Learning Model for Detecting Emotions from Text", Tech Science Press, 2021
More
Ahmed Raafat Abass Mohamed Saliem, "BERT-CNN: A Deep Learning Model for Detecting Emotions from Text", Tech Science Press, 2021
More
Ahmed Raafat Abass Mohamed Saliem, "Using General Regression with Local Tuning for Learning Mixture Models from Incomplete Data Sets", ScienceDirect, 2010
More
Ahmed Raafat Abass Mohamed Saliem, "On determining efficient finite mixture models with compact and essential components for clustering data", ScienceDirect, 2013
More
Ahmed Raafat Abass Mohamed Saliem, "Unsupervised learning of mixture models based on swarm intelligence and neural networks with optimal completion using incomplete data", ScienceDirect, 2012
More
جامعة المنصورة
جامعة الاسكندرية
جامعة القاهرة
جامعة سوهاج
جامعة الفيوم
جامعة بنها
جامعة دمياط
جامعة بورسعيد
جامعة حلوان
جامعة السويس
شراقوة
جامعة المنيا
جامعة دمنهور
جامعة المنوفية
جامعة أسوان
جامعة جنوب الوادى
جامعة قناة السويس
جامعة عين شمس
جامعة أسيوط
جامعة كفر الشيخ
جامعة السادات
جامعة طنطا
جامعة بنى سويف