Stego-Image Synthesis Employing Data-Driven Continuous Variable Representations of Cover Images

Faculty Computer Science Year: 2024
Type of Publication: ZU Hosted Pages: 146749 - 146770
Authors:
Journal: IEEE Access IEEE Access Volume: 12
Keywords : Stego-Image Synthesis Employing Data-Driven Continuous Variable    
Abstract:
The security of stego-images is a crucial foundation for analyzing steganography algorithms. Recently, steganography has made significant strides in ongoing conflicts with steganalysis. In order to increase the security of stego-images, steganography must be able to evade detection using steganalysis methods. Secret information is typically hidden using traditional embedding-based steganography, which inevitably leaves traces of the modifications that can be found using more sophisticated machine-learning-based steganalysis techniques. Steganography without embedding (SWE) outperforms machine-learning-based steganalysis techniques because it does not require alteration of the data of the cover image. A novel image SWE method based on deep convolutional generative adversarial networks (GANs) is proposed to synthesize stego-images led by embedded text. The variational autoencoder (VAE) in the GAN model is utilized to synthesize the stego-image, based on interpolating the secret text in a continuous variable representation of the cover image. To further improve the framework’s performance and shorten processing times, the whale optimization algorithm (WOA) is used to identify the optimal VAE structure. When creating a stego-image, no embedding or modification procedures are required, and after training, a different convolutional neural network (CNN) known as the extractor can correctly extract the data from the image. The experimental results revealed that this approach has the advantages of evading detection using innovative deep learning (DL) steganalysis architecture and accurate information extraction.
   
     
 
       

Author Related Publications

  • Wael Said AbdelMageed Mohamed, "A big data approach to sentiment analysis using greedy feature selection with cat swarm optimization-based long short-term memory neural networks", Springer Nature, 2018 More
  • Wael Said AbdelMageed Mohamed, "Improving the reconstruction of dental occlusion using a reconstructed‑based identical matrix point technique", Springer Nature Switzerland AG, 2021 More
  • Wael Said AbdelMageed Mohamed, "Connection-Adjustable Network Slicing Process for Heterogeneous Service Handling in Real-Time Applications", American Scientific Publishers, 2022 More
  • Wael Said AbdelMageed Mohamed, "Space Division Multiple Access for Cellular V2X Communications", Tech Science Press, 2022 More
  • Wael Said AbdelMageed Mohamed, "A Multi-Factor Authentication-Based Framework for Identity Management in Cloud Applications", Tech Science Press, 2021 More

Department Related Publications

  • Ahmed Salah Mohamed Mostafa, "Cluster-Distribute-Align-Merge: A General Algorithm to Speed Up Multiple Sequence Alignment on Multi-Core Computers", Journal of Computational and Theoretical Nanoscience, 2014 More
  • Zaher Awad Aboelenieen Elhendy, "NEW APPROACH TO IMAGE EDGE DETECTION BASED ON QUANTUM ENTROPY", JOURNAL OF RUSSIAN LASER RESEARCH, 2016 More
  • Sarah AbdelRazek Ahmed AbdulHameid, "Cloud Storage Forensics: Survey", International Journal of Engineering Trends and Technology (IJETT), 2017 More
  • Doaa El-Shahat Barakat Mohammed, "A modified hybrid whale optimization algorithm for the scheduling problem in multimedia data objects", Wiley online library, 2019 More
  • Abdallah Gamal abdallah mahmoud, "A novel model for evaluation Hospital medical care systems based on plithogenic sets", Elsevier B.V., 2019 More
Tweet