Explainable Deep Inherent Learning for Multi-Classes Skin Lesion Classification

Faculty Computer Science Year: 2024
Type of Publication: ZU Hosted Pages: 111624
Authors:
Journal: Applied Soft Computing ُ.Elsevier B.V Volume: 159
Keywords : Explainable Deep Inherent Learning , Multi-Classes Skin    
Abstract:
There is often a lack of explanation when artificial intelligence (AI) is used to diagnose skin lesions, which makes the physician unable to interpret and validate the output; thus, diagnostic systems become significantly less safe. In this paper, we proposed a deep inherent learning method to classify seven types of skin lesions. The proposed deep inherent learning was validated using different explanation techniques. Explainable AI (X-AI) was used to explain decision-making processes at the local and global levels. In addition, we provide visual information to help physicians trust the proposed method. The challenging dataset, HAM10000, was used to evaluate the proposed method. Medical practitioners can better understand the mechanisms of black-box AI models using our simple, stage-based X-AI framework. They can trust the proposed method because the rationale for its decisions is explained.
   
     
 
       

Author Related Publications

  • Wael Said AbdelMageed Mohamed, "A big data approach to sentiment analysis using greedy feature selection with cat swarm optimization-based long short-term memory neural networks", Springer Nature, 2018 More
  • Wael Said AbdelMageed Mohamed, "Improving the reconstruction of dental occlusion using a reconstructed‑based identical matrix point technique", Springer Nature Switzerland AG, 2021 More
  • Wael Said AbdelMageed Mohamed, "Connection-Adjustable Network Slicing Process for Heterogeneous Service Handling in Real-Time Applications", American Scientific Publishers, 2022 More
  • Wael Said AbdelMageed Mohamed, "Space Division Multiple Access for Cellular V2X Communications", Tech Science Press, 2022 More
  • Wael Said AbdelMageed Mohamed, "A Multi-Factor Authentication-Based Framework for Identity Management in Cloud Applications", Tech Science Press, 2021 More

Department Related Publications

  • Ahmed Salah Mohamed Mostafa, "Cluster-Distribute-Align-Merge: A General Algorithm to Speed Up Multiple Sequence Alignment on Multi-Core Computers", Journal of Computational and Theoretical Nanoscience, 2014 More
  • Zaher Awad Aboelenieen Elhendy, "NEW APPROACH TO IMAGE EDGE DETECTION BASED ON QUANTUM ENTROPY", JOURNAL OF RUSSIAN LASER RESEARCH, 2016 More
  • Sarah AbdelRazek Ahmed AbdulHameid, "Cloud Storage Forensics: Survey", International Journal of Engineering Trends and Technology (IJETT), 2017 More
  • Doaa El-Shahat Barakat Mohammed, "A modified hybrid whale optimization algorithm for the scheduling problem in multimedia data objects", Wiley online library, 2019 More
  • Abdallah Gamal abdallah mahmoud, "A novel model for evaluation Hospital medical care systems based on plithogenic sets", Elsevier B.V., 2019 More
Tweet