Zagazig University Digital Repository
Home
Thesis & Publications
All Contents
Publications
Thesis
Graduation Projects
Research Area
Research Area Reports
Search by Research Area
Universities Thesis
ACADEMIC Links
ACADEMIC RESEARCH
Zagazig University Authors
Africa Research Statistics
Google Scholar
Research Gate
Researcher ID
CrossRef
Modeling Influenced Criteria in Classifiers' Imbalanced Challenges Based on TrSS Bolstered by The Vague Nature of Neutrosophic Theory
Faculty
Computer Science
Year:
2024
Type of Publication:
ZU Hosted
Pages:
Authors:
Journal:
Neutrosophic Sets and Systems university of New Mexico
Volume:
Keywords :
Modeling Influenced Criteria , Classifiers' Imbalanced Challenges
Abstract:
Because of the advancements in technology, classification learning has become an essential activity in today's environment. Unfortunately, through the classification process, we noticed that the classifiers are unable to deal with the imbalanced data, which indicates there are many more instances (majority instances) in one class than in another. Identifying an appropriate classifier among the various candidates is a time-consuming and complex effort. Improper selection can hinder the classification model's ability to provide the right outcomes. Also, this operation requires preference among a set of alternatives by a set of criteria. Hence, multi-criteria decisionmaking (MCDM) methodology is the appropriate methodology can deploy in this problem. Accordingly, we applied MCDM and supported it through harnessing neurotrophic theory as motivators in uncertainty circumstances. Single value Neutrosophic sets (SVNSs) are applied as branch of Neutrosophic theory for evaluating and ranks classifiers and allows experts to select the best classifier So, to select the best classifier (alternative), we use MCDM method called MultiAttributive Ideal-Real Comparative Analysis (MAIRAC) and the criteria weight calculation method called Stepwise Weight Assessment Ratio Analysis (SWARA) where these methods consider singlevalue neutrosophic sets (SVNSs) to improve and boost these techniques in uncertain scenarios. All these methods are applied after modeling criteria and its sub-criteria through a novel technique is Tree Soft Sets (TrSS). Ultimately, the findings of leveraging these techniques indicated that the hybrid multi-criteria meta-learner (HML)-based classifier is the best classifier compared to the other compared models.
Author Related Publications
Department Related Publications
Ahmed Salah Mohamed Mostafa, "Lazy-Merge: A Novel Implementation for Indexed Parallel K-Way In-Place Merging", IEEE, 2016
More
Ibrahiem Mahmoud Mohamed Elhenawy, "A Review on the Applications of Neutrosophic Sets", Source: Journal of Computational and Theoretical Nanoscience, Volume 13, Number 1, January 2016, pp. 936-944(9), 2016
More
Doaa El-Shahat Barakat Mohammed, "A modified nature inspired meta-heuristic whale optimization algorithm for solving 0–1 knapsack problem", Springer Berlin Heidelberg, 2017
More
Ibrahiem Mahmoud Mohamed Elhenawy, "A novel whale optimization algorithm for cryptanalysis in Merkle-Hellman cryptosystem", Springer US, 2018
More
Abdallah Gamal abdallah mahmoud, "A Bipolar Neutrosophic Multi Criteria Decision Making Framework for Professional Selection", MDPI, 2020
More
جامعة المنصورة
جامعة الاسكندرية
جامعة القاهرة
جامعة سوهاج
جامعة الفيوم
جامعة بنها
جامعة دمياط
جامعة بورسعيد
جامعة حلوان
جامعة السويس
شراقوة
جامعة المنيا
جامعة دمنهور
جامعة المنوفية
جامعة أسوان
جامعة جنوب الوادى
جامعة قناة السويس
جامعة عين شمس
جامعة أسيوط
جامعة كفر الشيخ
جامعة السادات
جامعة طنطا
جامعة بنى سويف