Zagazig University Digital Repository
Home
Thesis & Publications
All Contents
Publications
Thesis
Graduation Projects
Research Area
Research Area Reports
Search by Research Area
Universities Thesis
ACADEMIC Links
ACADEMIC RESEARCH
Zagazig University Authors
Africa Research Statistics
Google Scholar
Research Gate
Researcher ID
CrossRef
A new binary object-oriented programming optimization algorithm for solving high-dimensional feature selection problem
Faculty
Computer Science
Year:
2023
Type of Publication:
ZU Hosted
Pages:
72-85
Authors:
Khalied Mohamed Hosny
Staff Zu Site
Abstract In Staff Site
Journal:
Alexandria Engineering Journal Elsevier
Volume:
85
Keywords :
, , binary object-oriented programming optimization algorithm , solving
Abstract:
Feature selection (FS) is a crucial task in machine learning applications, which aims to select the most appropriate feature subset while maintaining high classification accuracy with the minimum number of selected features. Despite the widespread usage of metaheuristics as wrapper-based FS techniques, they show reduced effectiveness and increased computational cost when applied to high-dimensional datasets. This paper presents a novel Binary Object-Oriented Programming Optimization Algorithm (BOOPOA) for FS of high dimensional datasets, where the Object-Oriented Programming Optimization Algorithm (OOPOA) is a novel optimization technique inspired by the inheritance concept of Object-Oriented programming (OOP) languages. The effectiveness of this method in solving high dimensional FS problems is validated by using 26 datasets, most of which are of high dimension (large number of features). Seven existing FS algorithms are compared with the proposed OOPOA using various metrics, including best fitness, average fitness (AVG), selection size, and computational time. The results prove the superiority of the proposed algorithm over the other FS algorithms, having an average performance of %92.5, 0.078, 0.084, %38.9, and 8.6 min for classification accuracy, best fitness, average fitness, size reduction ratio, and computational time. The outcomes demonstrate the proposed FS approach's superiority over currently used methods.
Author Related Publications
Khalied Mohamed Hosny, "SEMANTIC REPRESENTATION OF MUSIC DATABASE USING NEW ONTOLOGY-BASED SYSTEM", Journal of Theoretical and Applied Information Technology, 2020
More
Khalied Mohamed Hosny, "Building a New Semantic Social Network Using Semantic Web-Based Techniques", ِASPG, 2021
More
Khalied Mohamed Hosny, "New Graphical Ultimate Processor for Mapping Relational Database to Resource Description Framework", IEEE, 2022
More
Khalied Mohamed Hosny, "Fast computation of accurate Zernike moments", Springer, 2008
More
Khalied Mohamed Hosny, "Accurate Computation of QPCET for Color Images in Different Coordinate Systems", SPIE, 2017
More
Department Related Publications
Osama Mohamed Abdelsalam Ahmed Elkomy, "MT-nCov-Net: A Multitask Deep-Learning Framework for Efficient Diagnosis of COVID-19 Using Tomography Scans", IEEE, 2021
More
Osama Mohamed Abdelsalam Ahmed Elkomy, "Two-Stage Deep Learning Framework for Discrimination between COVID-19 and Community-Acquired Pneumonia from Chest CT scans.", ELSEVIER, 2021
More
Osama Mohamed Abdelsalam Ahmed Elkomy, "Efficient model for emergency departments: Real case study", Computers, Materials and ContinuaComputers, Materials and Continua, 2022
More
Ehab Roshdy Mohamed, "SEMANTIC REPRESENTATION OF MUSIC DATABASE USING NEW ONTOLOGY-BASED SYSTEM", Journal of Theoretical and Applied Information Technology, 2020
More
Khalied Mohamed Hosny, "SEMANTIC REPRESENTATION OF MUSIC DATABASE USING NEW ONTOLOGY-BASED SYSTEM", Journal of Theoretical and Applied Information Technology, 2020
More
جامعة المنصورة
جامعة الاسكندرية
جامعة القاهرة
جامعة سوهاج
جامعة الفيوم
جامعة بنها
جامعة دمياط
جامعة بورسعيد
جامعة حلوان
جامعة السويس
شراقوة
جامعة المنيا
جامعة دمنهور
جامعة المنوفية
جامعة أسوان
جامعة جنوب الوادى
جامعة قناة السويس
جامعة عين شمس
جامعة أسيوط
جامعة كفر الشيخ
جامعة السادات
جامعة طنطا
جامعة بنى سويف