Developments on metaheuristic-based optimization for numerical and engineering optimization problems: Analysis, design, validation, and applications

Faculty Computer Science Year: 2023
Type of Publication: ZU Hosted Pages:
Authors:
Journal: Alexandria Engineering Journal Elsevier B.V Volume:
Keywords : Developments , metaheuristic-based optimization , numerical , engineering optimization    
Abstract:
Optimization problems are prevalent in a variety of real-world applications, including medical, engineering, chemical, and others, and must be precisely solved to enhance the performance of these applications. Unfortunately, finding near-optimal solutions to these problems is regarded as a hard challenge due to their various characteristics. In a new attempt to solve these problems, this paper presents a new variant of the artificial gorilla troops optimizer (GTO) called ranking-based GTO (RGTO). This variant uses two strategies known as the ranking-based update strategy and the convergence acceleration strategy to improve both the classical GTO's exploitation and exploration capabilities. The first strategy is proposed to enhance each gorilla's local and global search abilities, whereas the latter is intended to enhance GTO's global search abilities to reach better solutions as quickly as possible. First, a recent and challenging benchmark, namely CEC-2017, is utilized to assess the RGTO's explorative and exploitative capabilities. After that, RGTO is used to solve three engineering optimization problems, including parameter estimation problems for both photovoltaic (PV) models and proton exchange membrane fuel cells (PEMFCs), as well as some engineering design problems, to demonstrate how well it performs for real-world optimization problems. Compared to several rival optimizers, the proposed algorithm provides outstanding outcomes for the three engineering optimization benchmark problems considered.
   
     
 
       

Author Related Publications

  • Mohammed Abdel Basset Metwally Attia, "Discrete greedy flower pollination algorithm for spherical traveling salesman problem", Springer, 2019 More
  • Mohammed Abdel Basset Metwally Attia, "A New Hybrid Flower Pollination Algorithm for Solving Constrained Global Optimization Problems", Natural Sciences Publishing Cor., 2014 More
  • Mohammed Abdel Basset Metwally Attia, "A novel equilibrium optimization algorithm for multi-thresholding image segmentation problems", Springer London, 2021 More
  • Mohammed Abdel Basset Metwally Attia, "An efficient binary slime mould algorithm integrated with a novel attacking-feeding strategy for feature selection", Pergamon, 2021 More
  • Mohammed Abdel Basset Metwally Attia, "An efficient teaching-learning-based optimization algorithm for parameters identification of photovoltaic models: Analysis and validations", Pergamon, 2021 More

Department Related Publications

  • Ibrahiem Mahmoud Mohamed Elhenawy, "BERT-CNN: A Deep Learning Model for Detecting Emotions from Text", Tech Science Press, 2021 More
  • Ahmed Raafat Abass Mohamed Saliem, "BERT-CNN: A Deep Learning Model for Detecting Emotions from Text", Tech Science Press, 2021 More
  • Ahmed Raafat Abass Mohamed Saliem, "Using General Regression with Local Tuning for Learning Mixture Models from Incomplete Data Sets", ScienceDirect, 2010 More
  • Ahmed Raafat Abass Mohamed Saliem, "On determining efficient finite mixture models with compact and essential components for clustering data", ScienceDirect, 2013 More
  • Ahmed Raafat Abass Mohamed Saliem, "Unsupervised learning of mixture models based on swarm intelligence and neural networks with optimal completion using incomplete data", ScienceDirect, 2012 More
Tweet