Zagazig University Digital Repository
Home
Thesis & Publications
All Contents
Publications
Thesis
Graduation Projects
Research Area
Research Area Reports
Search by Research Area
Universities Thesis
ACADEMIC Links
ACADEMIC RESEARCH
Zagazig University Authors
Africa Research Statistics
Google Scholar
Research Gate
Researcher ID
CrossRef
Toward Privacy Preserving Federated Learning in Internet of Vehicular Things: Challenges and Future Directions
Faculty
Computer Science
Year:
2021
Type of Publication:
ZU Hosted
Pages:
Page(s): 56 - 66
Authors:
Hosam Rada mohamed abdel megeed hawash
Staff Zu Site
Abstract In Staff Site
Journal:
IEEE Consumer Electronics Magazine IEEE
Volume:
Volume: 11
Keywords :
Toward Privacy Preserving Federated Learning , Internet
Abstract:
The Internet of vehicular things (IoVT) is turning into an indubitably evolving area of interest in either industrial or academic domains. The tremendous information exchanging between IoVT devices enable the development of a wide variety of vehicular applications i.e., intelligent transportation systems and autonomous driving system, etc. However, the sensitivity of this information resulted in growing security privacy concerns. Remarkably, federated learning (FL) is a promising paradigm of distributed learning from vehicular data of distinct agents without communicating the raw data among them. FL can appropriately use the computation power of manifold agents to develop efficient and privacy-preserving solutions for IoVT environment. Thus, this study figures out the potential of the FL approach in developing efficient decentralized solutions that consider the security and privacy concerns of the IoVT system. A federated graph convolutional recurrent network (Fed-GCRN) is introduced to learn spatial-temporal information for traffic flows forecasting. The Fed-GCRN introduce an adaptive differential privacy mechanism to realize a better privacy performance tradeoff. Finally, the current challenges related to FL are discussed along with the hopeful future directions that enable the development of more intelligent, secure, and private IoVT applications.
Author Related Publications
Hosam Rada mohamed abdel megeed hawash, "RCTE: A reliable and consistent temporal-ensembling framework for semi-supervised segmentation of COVID-19 lesions", ElSEVIER, 2021
More
Hosam Rada mohamed abdel megeed hawash, "PV-Net: An innovative deep learning approach for efficient forecasting of short-term photovoltaic energy production", ElSEVIER, 2021
More
Hosam Rada mohamed abdel megeed hawash, "Two-Stage Deep Learning Framework for Discrimination between COVID-19 and Community-Acquired Pneumonia from Chest CT scans", ElSEVIER, 2021
More
Hosam Rada mohamed abdel megeed hawash, "Deep learning approaches for human centered IoT applications in smart indoor environments: a contemporary survey", Springer, 2021
More
Hosam Rada mohamed abdel megeed hawash, "ST-DeepHAR: Deep Learning Model for Human Activity Recognition in IoHT Applications", IEEE, 2020
More
Department Related Publications
Abdallah Gamal abdallah mahmoud, "A Group Decision Making Framework Based on Neutrosophic TOPSIS Approach for Smart Medical Device Selection", Springer US, 2019
More
Ahmed Salah Mohamed Mostafa, "Real-Time and Automatic System for Performance Evaluation of Karate Skills Using Motion Capture Sensors and Continuous Wavelet Transform", Hindawi, 2023
More
Ibrahiem Mahmoud Mohamed Elhenawy, "Improving crisis events detection using distilbert with hunger games search algorithm", MDPI, 2022
More
Abdallah Gamal abdallah mahmoud, "Modern Soft Computing: Techniques and Applications", 2024
More
جامعة المنصورة
جامعة الاسكندرية
جامعة القاهرة
جامعة سوهاج
جامعة الفيوم
جامعة بنها
جامعة دمياط
جامعة بورسعيد
جامعة حلوان
جامعة السويس
شراقوة
جامعة المنيا
جامعة دمنهور
جامعة المنوفية
جامعة أسوان
جامعة جنوب الوادى
جامعة قناة السويس
جامعة عين شمس
جامعة أسيوط
جامعة كفر الشيخ
جامعة السادات
جامعة طنطا
جامعة بنى سويف