Dynamic Analysis of Sigmoid Bidirectional FG Microbeams under Moving Load and Thermal Load: Analytical Laplace Solution

Faculty Engineering Year: 2022
Type of Publication: ZU Hosted Pages:
Authors:
Journal: Mathematics MDPI Volume:
Keywords : Dynamic Analysis , Sigmoid Bidirectional , Microbeams under Moving    
Abstract:
This paper presents for the first time a closed-form solution of the dynamic response of sigmoid bidirectional functionally graded (SBDFG) microbeams under moving harmonic load and thermal environmental conditions. The formulation is established in the context of the modified couple stress theory to integrate the effects of microstructure. On the basis of the elasticity theory, nonclassical governing equations are derived by using Hamilton’s principle in combination with the parabolic higher-order shear deformation theory considering the physical neutral plane concept. Sigmoid distribution functions are used to describe the temperature-dependent thermomechanical material of bulk continuums of the beam in both the axial and thickness directions, and the gradation of the material length scale parameter is also considered. Linear and nonlinear temperature profiles are considered to present the environmental thermal loads. The Laplace transform is exploited for the first time to evaluate the closed-form solution of the proposed model for a simply supported (SS) boundary condition. The solution is verified by comparing the predicted fundamental frequency and dynamic response with the previously published results. A parametric study is conducted to explore the impacts of gradient indices in both directions, graded material length scale parameters, thermal loads, and moving speed of the acted load on the dynamic response of microbeams. The results can serve as a principle for evaluating the multi-functional and optimal design of microbeams acted upon by a moving load
   
     
 
       

Author Related Publications

  • Rabab Ahmed Ali Ahmed AbuShanab, "Vibration characteristics of two-dimensional FGM nanobeams with couple stress and surface energy under general boundary conditions", Elsevier, 2021 More
  • Rabab Ahmed Ali Ahmed AbuShanab, "Multi-objective optimization for lightweight design of bi-directional functionally graded beams for maximum frequency and buckling load", Elsevier, 2021 More
  • Rabab Ahmed Ali Ahmed AbuShanab, "On bending, buckling and free vibration analysis of 2D-FG tapered Timoshenko nanobeams based on modified couple stress and surface energy theories", Taylor & Francis, 2021 More
  • Rabab Ahmed Ali Ahmed AbuShanab, "Nonlinear analysis of functionally graded nanoscale beams incorporating the surface energy and microstructure effects", Elsevier, 2017 More
  • Rabab Ahmed Ali Ahmed AbuShanab, "Non-uniform HOC scheme for the 3D convection-diffusion equation", Science Publishing group, 2013 More

Department Related Publications

  • Soliman Soliman Soliman Alieldien, "A first-order shear deformation finite element model for elastostatic analysis of laminated composite plates and the equivalent functionally graded plates", Ain Shams Engineering Journal, 2011 More
  • Soliman Soliman Soliman Alieldien, "Size-dependent analysis of functionally graded ultra-thin films", Structural Engineering and Mechanics, Vol. 44, No. 4 (2012) 431-448, 2012 More
  • Soliman Soliman Soliman Alieldien, "Bending Analysis of Ultra-thin Functionally Graded Mindlin Plates Incorporating Surface Energy Effects", International Journal of Mechanical Sciences, 2013 More
  • Soliman Soliman Soliman Alieldien, "Finite element analysis of functionally graded nano-scale films", Finite Elements in Analysis and Design, 2013 More
  • Soliman Soliman Soliman Alieldien, "Finite Element Analysis of the Deformation of Functionally Graded Plates under Thermomechanical Loads", Mathematical Problems in Engineering, 2013 More
Tweet