On bending, buckling and free vibration analysis of 2D-FG tapered Timoshenko nanobeams based on modified couple stress and surface energy theories

Faculty Engineering Year: 2021
Type of Publication: ZU Hosted Pages:
Authors:
Journal: Waves in Random and Complex Media Taylor & Francis Volume:
Keywords : , bending, buckling , free vibration analysis , 2D-FG    
Abstract:
In this study, the static bending, buckling, and free vibration behaviors of two-dimensional functionally graded (2D-FG) tapered micro/nanobeams are modelled and analyzed. For the first time, the nonclassical equations of motion and corresponding boundary conditions of 2D-FG beam are simultaneously derived in the framework of the modified couple stress and Gurtin-Murdoch surface elasticity theories in conjunction with the Timoshenko beam theory. Here, all the material properties of the beam are graded along the thickness and length directions according to the power-law. Both thickness and width of the beam are considered to vary linearly along the length direction. Unlike existing Timoshenko beam models, the current formulation accounts for the axial and bending deformations, Poisson's effect, and exact position of the physical neutral plane. Differential quadrature method is employed to estimate the variable coefficients of the derived equations. The bending deflection, critical buckling load, and free vibration frequency of simply supported 2D-FG Timoshenko nanobeam are obtained employing the Navier's method. A parametric study is accompanied to investigate the effects of the different material and geometrical parameters on the mechanics of 2D-FG micro/nanobeams. It is observed that these parameters are very important in investigating the static and dynamic responses of 2D-FG micro/nanobeam.
   
     
 
       

Author Related Publications

  • Rabab Ahmed Ali Ahmed AbuShanab, "Vibration characteristics of two-dimensional FGM nanobeams with couple stress and surface energy under general boundary conditions", Elsevier, 2021 More
  • Rabab Ahmed Ali Ahmed AbuShanab, "Multi-objective optimization for lightweight design of bi-directional functionally graded beams for maximum frequency and buckling load", Elsevier, 2021 More
  • Rabab Ahmed Ali Ahmed AbuShanab, "Nonlinear analysis of functionally graded nanoscale beams incorporating the surface energy and microstructure effects", Elsevier, 2017 More
  • Rabab Ahmed Ali Ahmed AbuShanab, "Non-uniform HOC scheme for the 3D convection-diffusion equation", Science Publishing group, 2013 More
  • Rabab Ahmed Ali Ahmed AbuShanab, "Vibration analysis of Euler–Bernoulli nanobeams embedded in an elastic medium by a sixth-order compact finite difference method", Elsevier, 2015 More

Department Related Publications

  • Ashraf Abdelfattah Ali Hassanein, "Hot-Pressed Electrospun PAN Nano Fibers: An Idea for Flexible Carbon Mat", Journal of Materials Processing Technology,2009; 209:4617-4620, 2009 More
  • Mohammed Abdelmoniem Mohamed Eltaher , "Determination of neutral axis position and its effect on natural frequencies of functionally graded macro/nanobeams", www.elsevier.com/locate/compstruct, 2014 More
  • Mohammed Abdelmoniem Mohamed Eltaher , "Coupling effects of nonlocal and surface energy on vibration analysis of nanobeams", www.elsevier.com, 2013 More
  • Marwa Ahmed Abdelbaky Salam , "Interlaminar shear behavior of unidirectional glass fiber (U)/random glass fiber (R)/epoxy hybrid and non-hybrid composite laminates", ScienceDirect, 2012 More
  • Marwa Ahmed Abdelbaky Salam , "Statistical analysis of monotonic mechanical properties for unidirectional glass fiber (U)/random glass fiber (R)/epoxy hybrid and non-hybrid polymeric composites", sage, 2013 More
Tweet