Zagazig University Digital Repository
Home
Thesis & Publications
All Contents
Publications
Thesis
Graduation Projects
Research Area
Research Area Reports
Search by Research Area
Universities Thesis
ACADEMIC Links
ACADEMIC RESEARCH
Zagazig University Authors
Africa Research Statistics
Google Scholar
Research Gate
Researcher ID
CrossRef
Novel chalcone/aryl carboximidamide hybrids as potent anti-inflammatory via inhibition of prostaglandin E2 and inducible NO synthase activities: design, synthesis, molecular docking studies and ADMET prediction
Faculty
Pharmacy
Year:
2021
Type of Publication:
ZU Hosted
Pages:
1067-1078
Authors:
Tarek Mohamed Salah Rashad
Staff Zu Site
Abstract In Staff Site
Journal:
JOURNAL OF ENZYME INHIBITION AND MEDICINAL CHEMISTRY Taylor & Francis Group
Volume:
1
Keywords :
Novel chalcone/aryl carboximidamide hybrids as potent anti-inflammatory
Abstract:
Two series of chalcone/aryl carboximidamide hybrids 4a–f and 6a–f were synthesised and evaluated for their inhibitory activity against iNOS and PGE2. The most potent derivatives were further checked for their in vivo anti-inflammatory activity utilising carrageenan-induced rat paw oedema model. Compounds 4c, 4d, 6c and 6d were proved to be the most effective inhibitors of PGE2, LPS-induced NO production, iNOS activity. Moreover, 4c, 4d, 6c and 6d showed significant oedema inhibition ranging from 62.21% to 78.51%, compared to indomethacin (56.27 ± 2.14%) and celecoxib (12.32%). Additionally, 4c, 6a and 6e displayed good COX2 inhibitory activity while 4c, 6a and 6c exhibited the highest 5LOX inhibitory activity. Compounds 4c, 4d, 6c and 6d fit nicely into the pocket of iNOS protein (PDB ID: 1r35) via the important amino acid residues. Prediction of physicochemical parameters exhibited that 4c, 4d, 6c and 6d had acceptable physicochemical parameters and drug-likeness. The results indicated that chalcone/aryl carboximidamides 4c, 4d, 6c and 6d, in particular 4d and 6d, could be used as promising lead candidates as potent anti-inflammatory agents.
Author Related Publications
Tarek Mohamed Salah Rashad, "Uracil as a Zn-Binding Bioisostere of the Allergic Benzenesulfonamide in the Design of Quinoline–Uracil Hybrids as Anticancer Carbonic Anhydrase Inhibitors", mdpi, 2022
More
Tarek Mohamed Salah Rashad, "New Multi-Targeted Antiproliferative Agents: Design and Synthesis of IC261-Based Oxindoles as Potential Tubulin, CK1 and EGFR Inhibitors", mdpi, 2021
More
Tarek Mohamed Salah Rashad, "Novel 1,2,4-triazine-quinoline hybrids: The privileged scaffolds as potent multi-target inhibitors of LPS-induced inflammatory response via dual COX-2 and 15-LOX inhibition", ELSEVIER, 2021
More
Tarek Mohamed Salah Rashad, "Design, synthesis and pharmacological screening of novel renoprotective methionine-based peptidomimetics: Amelioration of cisplatin-induced nephrotoxicity", ELSEVIER, 2021
More
Tarek Mohamed Salah Rashad, "Discovery of novel quinoline-based analogues of combretastatin A-4 as tubulin polymerisation inhibitors with apoptosis inducing activity and potent anticancer effect", Taylor & Francis Group, 2021
More
Department Related Publications
Amany Mohamed Mohamed Elmahmoudy Sanger, "Uracil as a Zn-Binding Bioisostere of the Allergic Benzenesulfonamide in the Design of Quinoline–Uracil Hybrids as Anticancer Carbonic Anhydrase Inhibitors", mdpi, 2022
More
Tarek Mohamed Salah Rashad, "Uracil as a Zn-Binding Bioisostere of the Allergic Benzenesulfonamide in the Design of Quinoline–Uracil Hybrids as Anticancer Carbonic Anhydrase Inhibitors", mdpi, 2022
More
Amany Mohamed Mohamed Elmahmoudy Sanger, "Synthesis, Antibacterial Evaluation, and Computational Studies of a Diverse Set of Linezolid Conjugates", mdpi, 2022
More
Tarek Mohamed Salah Rashad, "New Multi-Targeted Antiproliferative Agents: Design and Synthesis of IC261-Based Oxindoles as Potential Tubulin, CK1 and EGFR Inhibitors", mdpi, 2021
More
Tarek Mohamed Salah Rashad, "Novel 1,2,4-triazine-quinoline hybrids: The privileged scaffolds as potent multi-target inhibitors of LPS-induced inflammatory response via dual COX-2 and 15-LOX inhibition", ELSEVIER, 2021
More
جامعة المنصورة
جامعة الاسكندرية
جامعة القاهرة
جامعة سوهاج
جامعة الفيوم
جامعة بنها
جامعة دمياط
جامعة بورسعيد
جامعة حلوان
جامعة السويس
شراقوة
جامعة المنيا
جامعة دمنهور
جامعة المنوفية
جامعة أسوان
جامعة جنوب الوادى
جامعة قناة السويس
جامعة عين شمس
جامعة أسيوط
جامعة كفر الشيخ
جامعة السادات
جامعة طنطا
جامعة بنى سويف