Zagazig University Digital Repository
Home
Thesis & Publications
All Contents
Publications
Thesis
Graduation Projects
Research Area
Research Area Reports
Search by Research Area
Universities Thesis
ACADEMIC Links
ACADEMIC RESEARCH
Zagazig University Authors
Africa Research Statistics
Google Scholar
Research Gate
Researcher ID
CrossRef
Energy-Net: A Deep Learning Approach for Smart Energy Management in IoT-Based Smart Cities
Faculty
Computer Science
Year:
2021
Type of Publication:
ZU Hosted
Pages:
Authors:
Hosam Rada mohamed abdel megeed hawash
Staff Zu Site
Abstract In Staff Site
Journal:
IEEE Internet of Things Journals IEEE
Volume:
Keywords :
Energy-Net: , Deep Learning Approach , Smart Energy
Abstract:
Although intelligent load forecasting is essential for optimal energy management (EM) in smart cities, there is a lack of current research exploring EM in well-regulated Internet-of-Things (IoT) networks. This article develops a new deep learning (DL) model for efficient forecasting of short-term energy consumption while maintaining effective communication between energy providers and users. The proposed Energy-Net stack comprises multiple stacked spatiotemporal modules, where each module consists of a temporal transformer (TT) submodule and a spatial transformer (ST) submodule. The TT models the temporal relationships in load data; and the ST submodule extracts hidden spatial information by integrating convolutional layers and includes an improved self-attention mechanism. The experimental evaluation on IHPEC and independent system operator New England (ISO-NE) data set demonstrates the superiority of Energy-Net over recent cutting-edge DL models with root mean-square error (RMSE) of 0.354 and 0.535, respectively. The computational complexity of Energy-Net is appropriate for dependable resource-constrained IoT devices (i.e., fog nodes or edge nodes) linked to a joint IoT-cloud server that interacts with connected smart grids to handle EM tasks.
Author Related Publications
Hosam Rada mohamed abdel megeed hawash, "RCTE: A reliable and consistent temporal-ensembling framework for semi-supervised segmentation of COVID-19 lesions", ElSEVIER, 2021
More
Hosam Rada mohamed abdel megeed hawash, "PV-Net: An innovative deep learning approach for efficient forecasting of short-term photovoltaic energy production", ElSEVIER, 2021
More
Hosam Rada mohamed abdel megeed hawash, "Two-Stage Deep Learning Framework for Discrimination between COVID-19 and Community-Acquired Pneumonia from Chest CT scans", ElSEVIER, 2021
More
Hosam Rada mohamed abdel megeed hawash, "Deep learning approaches for human centered IoT applications in smart indoor environments: a contemporary survey", Springer, 2021
More
Hosam Rada mohamed abdel megeed hawash, "ST-DeepHAR: Deep Learning Model for Human Activity Recognition in IoHT Applications", IEEE, 2020
More
Department Related Publications
Abdallah Gamal abdallah mahmoud, "A Group Decision Making Framework Based on Neutrosophic TOPSIS Approach for Smart Medical Device Selection", Springer US, 2019
More
Ahmed Salah Mohamed Mostafa, "Real-Time and Automatic System for Performance Evaluation of Karate Skills Using Motion Capture Sensors and Continuous Wavelet Transform", Hindawi, 2023
More
Zaher Awad Aboelenieen Elhendy, "NEW APPROACH TO IMAGE EDGE DETECTION BASED ON QUANTUM ENTROPY", JOURNAL OF RUSSIAN LASER RESEARCH, 2016
More
Ibrahiem Mahmoud Mohamed Elhenawy, "Improving crisis events detection using distilbert with hunger games search algorithm", MDPI, 2022
More
Abdallah Gamal abdallah mahmoud, "Modern Soft Computing: Techniques and Applications", 2024
More
جامعة المنصورة
جامعة الاسكندرية
جامعة القاهرة
جامعة سوهاج
جامعة الفيوم
جامعة بنها
جامعة دمياط
جامعة بورسعيد
جامعة حلوان
جامعة السويس
شراقوة
جامعة المنيا
جامعة دمنهور
جامعة المنوفية
جامعة أسوان
جامعة جنوب الوادى
جامعة قناة السويس
جامعة عين شمس
جامعة أسيوط
جامعة كفر الشيخ
جامعة السادات
جامعة طنطا
جامعة بنى سويف