COVID-19 diagnosis from CT scans and chest X-ray images using low-cost Raspberry Pi

Faculty Computer Science Year: 2021
Type of Publication: ZU Hosted Pages:
Authors:
Journal: Plos one Plos Volume: 2021
Keywords : COVID-19 diagnosis from , scans , chest X-ray    
Abstract:
The diagnosis of COVID-19 is of vital demand. Several studies have been conducted to decide whether the chest X-ray and computed tomography (CT) scans of patients indicate COVID-19. While these efforts resulted in successful classification systems, the design of a portable and cost-effective COVID-19 diagnosis system has not been addressed yet. The memory requirements of the current state-of-the-art COVID-19 diagnosis systems are not suitable for embedded systems due to the required large memory size of these systems (e.g., hundreds of megabytes). Thus, the current work is motivated to design a similar system with minimal memory requirements. In this paper, we propose a diagnosis system using a Raspberry Pi Linux embedded system. First, local features are extracted using local binary pattern (LBP) algorithm. Second, the global features are extracted from the chest X-ray or CT scans using multi-channel fractional-order Legendre-Fourier moments (MFrLFMs). Finally, the most significant features (local and global) are selected. The proposed system steps are integrated to fit the low computational and memory capacities of the embedded system. The proposed method has the smallest computational and memory resources, less than the state-of-the-art methods by two to three orders of magnitude, among existing state-of-the-art deep learning (DL)-based methods.
   
     
 
       

Author Related Publications

  • Ahmed Salah Mohamed Mostafa, "Artificial Intelligence and Machine Learning-Driven Decision-Making", Hindawi, 2021 More
  • Ahmed Salah Mohamed Mostafa, "Usages of Spark Framework with Different Machine Learning Algorithms", Hindawi, 2021 More
  • Ahmed Salah Mohamed Mostafa, "Efficient index-independent approaches for the collective spatial keyword queries", elsevier, 2021 More
  • Ahmed Salah Mohamed Mostafa, "A robust UWSN handover prediction system using ensemble learning", MDPI, 2021 More
  • Ahmed Salah Mohamed Mostafa, "Price Prediction of Seasonal Items Using Machine Learning and Statistical Methods", Tech Science Press, 2021 More

Department Related Publications

  • Osama Mohamed Abdelsalam Ahmed Elkomy, "MT-nCov-Net: A Multitask Deep-Learning Framework for Efficient Diagnosis of COVID-19 Using Tomography Scans", IEEE, 2021 More
  • Osama Mohamed Abdelsalam Ahmed Elkomy, "Two-Stage Deep Learning Framework for Discrimination between COVID-19 and Community-Acquired Pneumonia from Chest CT scans.", ELSEVIER, 2021 More
  • Osama Mohamed Abdelsalam Ahmed Elkomy, "Efficient model for emergency departments: Real case study", Computers, Materials and ContinuaComputers, Materials and Continua, 2022 More
  • Ehab Roshdy Mohamed, "SEMANTIC REPRESENTATION OF MUSIC DATABASE USING NEW ONTOLOGY-BASED SYSTEM", Journal of Theoretical and Applied Information Technology, 2020 More
  • Khalied Mohamed Hosny, "SEMANTIC REPRESENTATION OF MUSIC DATABASE USING NEW ONTOLOGY-BASED SYSTEM", Journal of Theoretical and Applied Information Technology, 2020 More
Tweet