An Improved Equilibrium Optimizer Algorithm for Tackling Global Optimization Problems

Faculty Computer Science Year: 2021
Type of Publication: ZU Hosted Pages:
Authors:
Journal: Fusion: Practice and Applications (FPA) Fusion: Practice and Applications (FPA) Volume:
Keywords : , Improved Equilibrium Optimizer Algorithm , Tackling Global    
Abstract:
This paper introduces a new, metaheuristic optimization algorithm, named an Improved Metaheuristic Equilibrium Optimizer (IMEO). The algorithm Equilibrium Optimizer (EO), is inspired by its method of estimating both equilibrium and dynamics, based on mass balance models. Studying the EO closely, we find that EO does not have the potential to get closer to the optimal global solution when it solves certain problems. To improve EO efficiency, this paper suggests using an improvement, called an elite opposition learning-based, that increase in the speed and accuracy of EO convergence, and helps the algorithm to get a better solutions. Falling into local optima is a big problem, EO suffers from the fact that when we look deeply at the standard EO mathematical formula, we found that the algorithm is trying to get out of the local optima, but sometimes it can't, so we're introducing a new mathematical formula based on using cosine trigonometric function. To validate the proposed algorithm efficiency, The IMEO algorithm is evaluated on 23 benchmarks and compared with other common naturalistic heuristic algorithms. The statistical analysis shows that the results of IMEO achieve better performance compared to the standard EO and several well-known algorithms on several benchmark issues
   
     
 
       

Author Related Publications

    Department Related Publications

    • Ibrahiem Mahmoud Mohamed Elhenawy, "BERT-CNN: A Deep Learning Model for Detecting Emotions from Text", Tech Science Press, 2021 More
    • Ahmed Raafat Abass Mohamed Saliem, "BERT-CNN: A Deep Learning Model for Detecting Emotions from Text", Tech Science Press, 2021 More
    • Ahmed Raafat Abass Mohamed Saliem, "Using General Regression with Local Tuning for Learning Mixture Models from Incomplete Data Sets", ScienceDirect, 2010 More
    • Ahmed Raafat Abass Mohamed Saliem, "On determining efficient finite mixture models with compact and essential components for clustering data", ScienceDirect, 2013 More
    • Ahmed Raafat Abass Mohamed Saliem, "Unsupervised learning of mixture models based on swarm intelligence and neural networks with optimal completion using incomplete data", ScienceDirect, 2012 More
    Tweet