Predictive model for indentation of elasto-plastic functionally graded composites

Faculty Engineering Year: 2020
Type of Publication: ZU Hosted Pages:
Authors:
Journal: Composites Part B: Engineering Elsevier Ltd Volume: Volume 197
Keywords : Predictive model , indentation , elasto-plastic functionally graded    
Abstract:
In this paper, the complex phenomena of the elastic and elastoplastic indentation responses of functionally graded materials (FGMs) are studied in the framework of frictional contact mechanics using finite element method. The proposed model accounts for the continuous gradation of all the elastic and plastic properties of the indented material along its thickness using power law function and Tamura, Tomota and Ozawa (TTO) model. Classical Coulomb's friction law is utilized to model the friction effect throughout the contact interface. The model is implemented in ANSYS FE software and utilized to simulate the axisymmetric frictional contact of an FGM substrate and a rigid spherical indenter. Parametric studies are performed to investigate the effects of friction coefficient, gradient index, and FGM-constituent materials on the frictional indentation behaviors of elastic and elastoplastic FGMs under loading/unloading pattern. Results show that the frictional contact response of elastoplastic FGMs can be controlled by appropriate choice of the gradient index. Using obtained numerical results, an empirical equation is derived to predict the normalized residual indentation depth for elastoplastic FGMs by knowing the gradient index and a single material parameter under frictional spherical indentation.
   
     
 
       

Author Related Publications

  • Mohammed Adly AttiaIbrahiem , "Vibration characteristics of two-dimensional FGM nanobeams with couple stress and surface energy under general boundary conditions", Elsevier, 2021 More
  • Mohammed Adly AttiaIbrahiem , "Multi-objective optimization for lightweight design of bi-directional functionally graded beams for maximum frequency and buckling load", Elsevier, 2021 More
  • Mohammed Adly AttiaIbrahiem , "On bending, buckling and free vibration analysis of 2D-FG tapered Timoshenko nanobeams based on modified couple stress and surface energy theories", Taylor & Francis, 2021 More
  • Mohammed Adly AttiaIbrahiem , "Thermal vibration characteristics of pre/post‑buckled bi‑directional functionally graded tapered microbeams based on modifed couple stress Reddy beam theory", Springer, 2020 More
  • Mohammed Adly AttiaIbrahiem , "Nonlinear thermal buckling and postbuckling analysis of bidirectional functionally graded tapered microbeams based on Reddy beam theory", Springer, 2020 More

Department Related Publications

  • Mohamed Ibrahim Mohamed Abdelaal, "3D FEM simulations and experimental validation of plastic deformation of pure aluminum deformed by ECAP and combination of ECAP and direct extrusion", sciencedirect, 2017 More
  • Mohamed Ali Elsayed Mohamed Agwa , "Optimum processing parameters for equal channel angular pressing", Elsevier, 2016 More
  • Amal Elhosaieny Meselhy Alshorbagy, "Optimum processing parameters for equal channel angular pressing", Elsevier, 2016 More
  • Mariam Nabil Aly Hssan, "Optimum processing parameters for equal channel angular pressing", Elsevier, 2016 More
  • Mohamed Adel Taha Mohamed Abass , "ANN Surface Roughness Optimization of AZ61 Magnesium Alloy Finish Turning: Minimum Machining Times at Prime Machining Costs", mdpi, 2018 More
Tweet