Quercetin and lithium chloride potentiate the protective effects of carvedilol against renal ischemia-reperfusion injury in high-fructose, high-fat diet-fed Swiss albino mice independent of renal lipid signaling

Faculty Pharmacy Year: 2020
Type of Publication: ZU Hosted Pages:
Authors:
Journal: Chemico-Biological Interactions Elsevier Volume:
Keywords : Quercetin , lithium chloride potentiate , protective effects    
Abstract:
Renal ischemia-reperfusion injury (R-IRI) is the main cause of acute renal failure. Carvedilol has been shown to protect against R-IRI. However, the underlying mechanisms are still not completely clarified. This study aimed to investigate the role of lipid signaling in mediating carvedilol protective effects against R-IRI in insulin-resistant mice by using two different lipid signaling modulators, quercetin and lithium chloride (LiCl). Mice were fed high-fructose, high-fat diet (HFrHFD) for 16 weeks to induce insulin resistance. At the end of feeding period, mice were randomly distributed into five groups; Sham, R-IRI, Carvedilol (20 mg/kg, i.p.), Carvedilol + Quercetin (10 mg/kg, i.p.), Carvedilol + LiCl (200 mg/kg, i.p.). R-IRI was performed by applying 30 min of unilateral renal ischemia followed by one hour of reperfusion. Quercetin and LiCl were administered 30 min before carvedilol administration and carvedilol was administered 30 min before ischemia. Changes in kidney function tests, histopathology, fibrosis area, lipid signaling, inflammatory, apoptosis and oxidative stress markers in the kidney were measured. Results showed that R-IRI decreased kidney function, impaired renal tissue integrity, modulated lipid signaling and increased renal inflammation, apoptosis and oxidative stress. Carvedilol treatment decreased the detrimental effects induced by R-IRI. In addition, pre-injection of both quercetin and LiCl potentiated the reno-protective effects of carvedilol against R-IRI independent of changes in lipid mediators like phosphatidyl inositol 4,5 bisphosphate (PIP2) and diacylglycerol (DAG). In conclusion, quercetin and LiCl potentiate the protective effects of carvedilol against R-IRI in HFrHFD-fed mice by reducing inflammation and oxidative stress independent of lipid signaling.
   
     
 
       

Author Related Publications

  • Eslam Ahmed Abdelhamid ebrahiem, "GSK-3 heterozygous knockout is cardioprotective in a knockin mouse model of familial dilated cardiomyopathy", Am J Physiol Heart Circ Physiol, 2016 More
  • Eslam Ahmed Abdelhamid ebrahiem, "β-arrestin-mediated signaling improves the efficacy of therapeutics.", J-STAGE, 2012 More
  • Eslam Ahmed Abdelhamid ebrahiem, "Sildenafil protects against bile duct ligation induced hepatic fibrosis in rats: Potential role for silent information regulator 1 (SIRT1)", ُElsevier, 2017 More
  • Eslam Ahmed Abdelhamid ebrahiem, "Hesperidin protects against stress induced gastric ulcer through regulation of peroxisome proliferator activator receptor gamma in diabetic rats", ELSEVIER, 2018 More
  • Eslam Ahmed Abdelhamid ebrahiem, "Ameliorative effects of clonidine on ethanol induced kidney injury in rats: Potential role for imidazoline-1 receptor.", zagizag, 2018 More

Department Related Publications

  • Hanan Hamdy Mahmoud Ibrahiem, "Study on the Molecular Mechanisms Involved Renal tissue injury", لايوجد, 1900 More
  • Rasha Hassan Abdelghani Hassan , "Effect of lansoprazole on gastric secretion, prostaglandin £2 and plasma", لايوجد, 1900 More
  • Nabila Noureldeen Mostafa Elmaraghy, "Pharmacological Studies on the possible Interactions between Some Analgesics", لايوجد, 1900 More
  • Hany Mohamed Abdelmalek Mahmoud ElBassossy, "Heme oxygenase-1 induction protects against hypertension associated with diabetes: effect on exaggerated vascular contractility", Naunyn-Schmiedeberg's Archives of Pharmacology, 2013 More
  • Mohammed Nagieb Mohamed Zakarya Hassan , "Heme oxygenase-1 induction protects against hypertension associated with diabetes: effect on exaggerated vascular contractility", Naunyn-Schmiedeberg's Archives of Pharmacology, 2013 More
Tweet