Zagazig University Digital Repository
Home
Thesis & Publications
All Contents
Publications
Thesis
Graduation Projects
Research Area
Research Area Reports
Search by Research Area
Universities Thesis
ACADEMIC Links
ACADEMIC RESEARCH
Zagazig University Authors
Africa Research Statistics
Google Scholar
Research Gate
Researcher ID
CrossRef
Effect of the wall thermal boundary condition on the structure of a confined swirling diffusion flame
Faculty
Engineering
Year:
2019
Type of Publication:
ZU Hosted
Pages:
Authors:
Hafez Abdelaal Hafez Alsalmawy
Staff Zu Site
Abstract In Staff Site
Journal:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Springer Nature
Volume:
Keywords :
Effect , , wall thermal boundary condition , , structure
Abstract:
The present study focuses on the effect of the wall heat loss on a confined swirling diffusion flame. The objective is to assess the effect of changing the wall thermal boundary condition (i.e., from isothermal to adiabatic) on the flow structure, the flame shape, and the mixing behavior. Reynolds-averaged Navier–Stokes equations are solved. The diffusion flamelet model is employed in the simulation. The comparison of the numerical and experimental axial wall heat flux distributions shows a good agreement. The inner recirculation zone (IRZ) is shorter in the case of the adiabatic wall. It features higher negative axial velocities. The radial gradient of the axial velocity is higher which could enhance mixing and flame stability. The outer recirculation zone (ORZ) size does not change with the wall thermal boundary condition. Generally, the exit flow from the furnace decelerates due to the formation of the IRZ. This effect is more pronounced when the IRZ is longer, as the case when there is a wall heat loss. The flame is longer in the adiabatic wall case. However, its position relative to the burner exit does not change compared to the isothermal wall. In both cases, the flame is stabilized on the boundary of the IRZ. The mixing behavior is similar for the two wall thermal boundary conditions. However, the adiabatic wall case features a more fuel-rich mixture in the flame stabilization region, mainly due to the different velocity fields. Pockets of very fuel-rich mixtures are formed in the ORZ.
Author Related Publications
Hafez Abdelaal Hafez Alsalmawy, "Numerical Simulation and Experimental Study for the Impact of In-Flow Nozzle on Spray Characteristics", ASC publication, 2021
More
Hafez Abdelaal Hafez Alsalmawy, "Design, Installation, and Performance Monitoring of a 105 kWp Rooftop Solar PV System", SEMARAK ILMU PUBLISHING, 2023
More
Department Related Publications
Mohamed Lotfy Elsayed Abdelkreem, "THERMAL PERFORMANCE OF FLAT PLATE HEAT SINK WITH ATTACHED HEAT SHIELD", Zagazig University, 2012
More
Mohamed Lotfy Elsayed Abdelkreem, "Effect of a Slotted Shield on Thermal and Hydraulic Performance of a Heat Sink", ASME, 2014
More
Saliem Abdelaziz Saliem Anose, "Role of hybrid nanoparticles on thermal, electrical conductivity, microstructure, and hardness behavior of nanocomposite matrix", Elsevier B.V., 2021
More
Saliem Abdelaziz Saliem Anose, "Numerical Investigation of Flow and Heat Transfer over a Shallow Cavity: Effect of Cavity Height Ratio", MDPI, 2021
More
Saliem Abdelaziz Saliem Anose, "Thermodynamic Analysis of Partitioned Combined Cycle using Simple Gases", MDPI, 2019
More
جامعة المنصورة
جامعة الاسكندرية
جامعة القاهرة
جامعة سوهاج
جامعة الفيوم
جامعة بنها
جامعة دمياط
جامعة بورسعيد
جامعة حلوان
جامعة السويس
شراقوة
جامعة المنيا
جامعة دمنهور
جامعة المنوفية
جامعة أسوان
جامعة جنوب الوادى
جامعة قناة السويس
جامعة عين شمس
جامعة أسيوط
جامعة كفر الشيخ
جامعة السادات
جامعة طنطا
جامعة بنى سويف