A data decomposition middleware tool with a generic built-in work-flow

Faculty Computer Science Year: 2013
Type of Publication: ZU Hosted Pages:
Authors:
Journal: Proceedings of the 20th European MPI Users' Group Meeting ACM Volume:
Keywords : , data decomposition middleware tool with , generic    
Abstract:
The steady increase of the biological data encourages computer scientists to develop data-analytical methods in order to study the biological systems. Most of these methods are firstly presented in the sequential version and then it is conv
   
     
 
       

Author Related Publications

  • Ahmed Salah Mohamed Mostafa, "Artificial Intelligence and Machine Learning-Driven Decision-Making", Hindawi, 2021 More
  • Ahmed Salah Mohamed Mostafa, "Usages of Spark Framework with Different Machine Learning Algorithms", Hindawi, 2021 More
  • Ahmed Salah Mohamed Mostafa, "Efficient index-independent approaches for the collective spatial keyword queries", elsevier, 2021 More
  • Ahmed Salah Mohamed Mostafa, "A robust UWSN handover prediction system using ensemble learning", MDPI, 2021 More
  • Ahmed Salah Mohamed Mostafa, "Price Prediction of Seasonal Items Using Machine Learning and Statistical Methods", Tech Science Press, 2021 More

Department Related Publications

  • Ahmed Raafat Abass Mohamed Saliem, "BERT-CNN: A Deep Learning Model for Detecting Emotions from Text", Tech Science Press, 2021 More
  • Ibrahiem Mahmoud Mohamed Elhenawy, "BERT-CNN: A Deep Learning Model for Detecting Emotions from Text", Tech Science Press, 2021 More
  • Ahmed Raafat Abass Mohamed Saliem, "Using General Regression with Local Tuning for Learning Mixture Models from Incomplete Data Sets", ScienceDirect, 2010 More
  • Abdallah Gamal abdallah mahmoud, "An approach of TOPSIS technique for developing supplier selection with group decision making under type-2 neutrosophic number", Elsevier B.V., 2019 More
  • Ahmed Raafat Abass Mohamed Saliem, "Using Incremental General Regression Neural Network for Learning Mixture Models from Incomplete Data", ScienceDirect, 2011 More
Tweet