A Comprehensive Evaluation of Machine Learning and Deep Learning Models for Churn Prediction

Faculty Computer Science Year: 2025
Type of Publication: ZU Hosted Pages:
Authors:
Journal: Information MDPI Volume:
Keywords : , Comprehensive Evaluation , Machine Learning , Deep Learning    
Abstract:
Churn prediction has become one of the core concepts in customer relationship management within the insurances, telecom, and internet service provider industries, which is essential in customer retention. Therefore, this study attempts to analyze the effectiveness of the advanced machine learning and deep learning models for churn prediction in the evaluation of the models’ performance across different sectors. This would help conclude whether the varied patterns of the churn throughout different sectors to the level that affects the model performance and to what extent. The work includes three datasets: namely, insurance churn, internet service provider customer churn, and Telecom churn datasets. The implementation and comparison conducted in this study of models include XGBoost, Convolutional Neural Networks (CNNs), and Ensemble Deep Learning with the pre-trained hybrid approach. The results show that the ensemble deep learning model outperforms other models in terms of accuracy and F1-score, achieving accuracies of up to 95.96% in the insurance churn dataset and of 98.42% in the telecom churn dataset. Moreover, traditional machine learning models like XGBoost also produced competitive results for selected datasets. The proposed deep learning ensembles reveal the strength and possibility for churn prediction and provide a benchmark for future research relevant to customer retention strategies. Also, the proposed ensemble deep learning model shows stable performance across different sectors, which reflects its ability to capture the varied churn patterns of different sectors.
   
     
 
       

Author Related Publications

  • Nabil Moustafa AbdelAziz, "A Modified Artificial Bee Colony Algorithm for Solving Least-Cost Path Problem in Raster GIS", Natural Sciences Publishing Corporation., 2015 More
  • Nabil Moustafa AbdelAziz, "Enhancing ArcGIS Decision Making Capabilities Using an Intelligent Multicriteria Decision Analysis Toolbox", International Society for Environmental Information Sciences., 2012 More
  • Nabil Moustafa AbdelAziz, "An Expert System for Choosing the Suitable MCDM Method for solving A Spatial Decision Problem", Alex, Egypt, 2009 More
  • Nabil Moustafa AbdelAziz, "Efficient MCDM Model for Evaluating the Performance of Commercial Banks: A Case Study", Tech Science Press, 2021 More
  • Nabil Moustafa AbdelAziz, "Green Communication for Sixth-Generation Intent-Based Networks: An Architecture Based on Hybrid Computational Intelligence Algorithm", Hindawi, 2021 More

Department Related Publications

  • Khalid Aly Eldrandaly Mohamed Saeed Eldrandaly, "GIS software selection: a multi-criteria decision making approach", Monash University ePress., 2007 More
  • Khalid Aly Eldrandaly Mohamed Saeed Eldrandaly, "A Knowledge-Based System for GIS Software Selection", Zarqa University., 2013 More
  • Soaad Mohamed Nagieb, "A Knowledge-Based System for GIS Software Selection", Zarqa University., 2013 More
  • Khalid Aly Eldrandaly Mohamed Saeed Eldrandaly, "Exploring multi-criteria decision strategies in GIS with linguistic quantifiers: an extension of the analytical network process using ordered weighted averaging operators", Taylor and Francis Ltd., 2013 More
  • Mai Mohamed Abass Morsy Shomaan, "e-Business Web Portals Evaluation", Alex, Egypt, 2009 More
Tweet