Integrating Deep Learning and Radiogenomics: A Novel Approach to Glioblastoma Segmentation and MGMT Methylation Prediction

Faculty Computer Science Year: 2025
Type of Publication: ZU Hosted Pages:
Authors:
Journal: Journal of Imaging MDPI Volume:
Keywords : Integrating Deep Learning , Radiogenomics: , Novel Approach    
Abstract:
Radiogenomics, which integrates imaging phenotypes with genomic profiles, enhances diagnosis, prognosis, and treatment planning for glioblastomas. This study specifically establishes a correlation between radiomic features and MGMT promoter methylation status, advancing towards a non-invasive, integrated diagnostic paradigm. Conventional genetic analysis requires invasive biopsies, which cause delays in obtaining results and necessitate further surgeries. Our methodology is twofold: First, an enhanced U-Net model segments brain tumor regions with high precision (Dice coefficient: 0.889). Second, a hybrid classifier, leveraging the complementary features of EfficientNetB0 and ResNet50, predicts MGMT promoter methylation status from the segmented volumes. The proposed framework demonstrated superior performance in predicting MGMT promoter methylation status in glioblastoma patients compared to conventional methods, achieving a classification accuracy of 95% and an AUC of 0.96. These results underscore the model’s potential to enhance patient stratification and guide treatment selection. The accurate prediction of MGMT promoter methylation status via non-invasive imaging provides a reliable criterion for anticipating patient responsiveness to alkylating chemotherapy. This capability equips clinicians with a tool to inform personalized treatment strategies, optimizing therapeutic efficacy from the outset.
   
     
 
       

Author Related Publications

  • Nabil Moustafa AbdelAziz, "A Modified Artificial Bee Colony Algorithm for Solving Least-Cost Path Problem in Raster GIS", Natural Sciences Publishing Corporation., 2015 More
  • Nabil Moustafa AbdelAziz, "Enhancing ArcGIS Decision Making Capabilities Using an Intelligent Multicriteria Decision Analysis Toolbox", International Society for Environmental Information Sciences., 2012 More
  • Nabil Moustafa AbdelAziz, "An Expert System for Choosing the Suitable MCDM Method for solving A Spatial Decision Problem", Alex, Egypt, 2009 More
  • Nabil Moustafa AbdelAziz, "Efficient MCDM Model for Evaluating the Performance of Commercial Banks: A Case Study", Tech Science Press, 2021 More
  • Nabil Moustafa AbdelAziz, "Green Communication for Sixth-Generation Intent-Based Networks: An Architecture Based on Hybrid Computational Intelligence Algorithm", Hindawi, 2021 More

Department Related Publications

  • Khalid Aly Eldrandaly Mohamed Saeed Eldrandaly, "GIS software selection: a multi-criteria decision making approach", Monash University ePress., 2007 More
  • Soaad Mohamed Nagieb, "A Knowledge-Based System for GIS Software Selection", Zarqa University., 2013 More
  • Khalid Aly Eldrandaly Mohamed Saeed Eldrandaly, "A Knowledge-Based System for GIS Software Selection", Zarqa University., 2013 More
  • Khalid Aly Eldrandaly Mohamed Saeed Eldrandaly, "Exploring multi-criteria decision strategies in GIS with linguistic quantifiers: an extension of the analytical network process using ordered weighted averaging operators", Taylor and Francis Ltd., 2013 More
  • Mai Mohamed Abass Morsy Shomaan, "e-Business Web Portals Evaluation", Alex, Egypt, 2009 More
Tweet