Detection of Unreported Treatments in Pavement Management System of Iowa DOT Using Machine Learning Classification Algorithm

Faculty Engineering Year: 2022
Type of Publication: ZU Hosted Pages:
Authors:
Journal: Journal of Transportation Engineering, Part B: Pavements ASCE Volume:
Keywords : Detection , Unreported Treatments , Pavement Management System    
Abstract:
Treatment records are among the most frequently underreported data items in pavement management systems (PMSs), which negatively affects various PMS analysis tools, such as pavement performance and deterioration models. Disregarding unreported treatments may lead to inaccurate pavement age and condition estimates, resulting in erroneous and nonoptimal maintenance and rehabilitation decisions. Nevertheless, the unreported and frequently missing pavement treatment data has received limited attention. Hence, this paper contributes to the body of knowledge by introducing a methodology for detecting unreported treatment actions and their occurrence probabilities over pavement age using a machine learning classification algorithm. Logistic regression models were developed using historical pavement condition data and validated on two levels: (1) split validation; and (2) manual validation using video logs of the pavement condition before and after treatment application. The results show that the developed models can detect unreported pavement treatments with accuracy, precision, and F1 scores ranging from 89% to 96%, 82% to 91%, and 70% to 85%, respectively. The presented methodology and developed models will help highway agencies identify unreported and missing pavement treatments, contributing to more cost-effective maintenance and rehabilitation decisions.
   
     
 
       

Author Related Publications

  • Mohammed Samer Mohamed Yamany, "Generation of Synthetic Dataset to Improve Deep Learning Models for Pavement Distress Assessment", Springer Nature, 2025 More
  • Mohammed Samer Mohamed Yamany, "Assessment of scope definition for building projects in Saudi Arabia", Taylor & Francis, 2024 More
  • Mohammed Samer Mohamed Yamany, "Leveraging Convolutional Neural Networks for Efficient Classification of Heavy Construction Equipment", Springer Nature, 2024 More
  • Mohammed Samer Mohamed Yamany, "Enhancing Local Road Pavement Condition Prediction Using Bayesian-Optimized Ensemble Machine Learning and Adaptive Synthetic Sampling Technique", Taylor & Francis, 2024 More
  • Mohammed Samer Mohamed Yamany, "Quantitative and Qualitative Review of Material Waste Management in Construction Projects", Springer Nature, 2024 More

Department Related Publications

  • Ahmed Elsayed Ali Mahmoud, "An Integrated Sustainable Construction Project’s Critical Success Factors (ISCSFs)", Sustainable Engineering and Science, 2021 More
  • Gamal Saber Ahmed Elfiky, "Determination of local gravimetric geoid model over Egypt using LSC and FFT estimation techniques based on different satellite- and ground-based datasets", Taylor & Francis, 2021 More
  • Mohammed Ahmed Ali Alashkar , "Determination of local gravimetric geoid model over Egypt using LSC and FFT estimation techniques based on different satellite- and ground-based datasets", Taylor & Francis, 2021 More
  • Ahmed Hussien Ibrahim Mahmmoud, "Management of Construction Cost Contingency Covering Upside and Downside Risks.", Alexandria Engineering Journal (AEJ),, 2014 More
Tweet