Zn(II) and Cd(II) complexes of dithiocarbamate ligands: synthesis, characterization, anticancer, and theoretical studies

Faculty Science Year: 2024
Type of Publication: ZU Hosted Pages:
Authors:
Journal: Journal of Sulfur Chemistry United Kingdom Volume:
Keywords : Zn(II) , Cd(II) complexes , dithiocarbamate ligands: synthesis,    
Abstract:
A potassium 4-(ethoxycarbonyl)phenyldithiocarbamate, (4-etphdtc), and 6-ethoxybenzothiazol)-dithiocarbamate, (6-etbedtc), ligands have been isolated and four metal dithiocarbamate complexes of the type [M(4-etphdtc)2] and [M(6-etbedtc)2] (M = Zn, Cd;) were synthesized and characterized by elemental analysis and spectroscopic techniques (FT-IR,1H and13C1H-NMR, HRMS, UV–vis). Thermogravimetric studies of all four complexes were performed and the final product of the thermal decomposition was metal sulfides. The theoretical study with density functional theory (DFT) has been utilized to optimize the structures of the complexes for HOMO–LUMO energy calculation. Non-bonding orbitals (NBO) analysis was performed to determine the numerous hyper-conjugative interactions responsible for the stability of the compound. In addition, Molecular Electrostatic Potential (MEP) analysis was conducted to identify the compounds’ electron-rich, electron-poor, reactive sites, and bonding characteristics. The Electron Localization Function (ELF), and AIM Charges are also calculated. In vitro cytotoxicity, the complexes were examined against cervical cancer cells (HeLa) to assess their reactivity. Molecular docking studies were conducted to confirm the biological activity by simulating the binding orientation and affinity of the ligands and their complexes against VEGFR2 kinase, The investigated ligands interact with the binding site as; hydrophilic (Lys868, Glu885, His1026, Cys1045, and Asp1046) and hydrophobic (Val889 and Leu889) for 4-etphdtc; hydrophilic (Lys868, Glu885, Cys1045, and Asp1046) and hydrophobic (Val889, Leu889, Leu1035, and Phe1047) for 6-etphdtc. The calculated binding free energy values for Zn(4-etphdtc)2 and Zn(6-etphdtc)2 complexes are – 9.700 kcal/mol, – 10.003 kcal/mol, respectively
   
     
 
       

Author Related Publications

  • Abdullah Elsayed Abdullah Hassan, "A novel polystyrene/epoxy ultra‐fine hybrid fabric by electrospinning", Wiley, 2018 More
  • Abdullah Elsayed Abdullah Hassan, "6-Methylpurine Derived Sugar Modified Nucleosides: Synthesis and Evaluation of their Substrate Activity with Purine Nucleoside Phosphorylases", Elsevier, 2016 More
  • Abdullah Elsayed Abdullah Hassan, "Lithium Hexamethyldisilazane Transformation of Transiently Protected 4‑Aza/Benzimidazole Nitriles to Amidines and their Dimethyl Sulfoxide Mediated Imidazole Ring Formation", American Chemical Society, USA, 2016 More
  • Abdullah Elsayed Abdullah Hassan, "6-Methylpurine derived sugar modified nucleosides: Synthesis and in vivo antitumor activity in D54 tumor expressing M64V-Escherichia coli purine nucleoside phosphorylase", Elsevier Masson SAS., 2016 More
  • Abdullah Elsayed Abdullah Hassan, "Construction and structure studies of DNA-bipyridine complexes as versatile scaffolds for site-specific incorporation of metal ions into DNA", Taylor & Francis, 2018 More

Department Related Publications

  • Mohamed Gamal Helmy Mohamed Abdelwahed, "Electronic Properties of Organic Complexes. 2. Reactive Azodyes", Spain, 1993 More
  • Mohamed Gamal Helmy Mohamed Abdelwahed, "Electrical Behaviour of some Azodye Mixed Ligand with Gd3+ and Er3+. b", Peru, 1994 More
  • Atef Mohamed AbdelHamid Ali Hassn, "heterocyclization of thiouracil derivative: synthesis of thiazolopyrimidines, tetrazolopyrimidines and triazolopyrimidines of potential biological activity", elsevier, 2015 More
  • Mohammed Aref Awad Allah Abu Zyd, "Synergistic positive effects of nano barium silicate on the hydration rate and phase composition of alkali-activated slag", Elsevier, 2022 More
  • Ahmed Abdelmoniem Ahmed Amer, "Synthesis and characterization of some calcium aluminate phases from nano-size starting materials", 0366-3175/© 2020 SECV. Published by Elsevier Espana, ˜ S.L.U, 2020 More
Tweet