Comparative analyses and optimizations of hybrid biomass and solar energy systems based upon a variety of biomass technologies

Faculty Engineering Year: 2024
Type of Publication: ZU Hosted Pages:
Authors:
Journal: Energy Conversion and Management- X Elsevier Volume:
Keywords : Comparative analyses , optimizations , hybrid biomass , solar    
Abstract:
The abundance of fossil fuels and their negative environmental effects, together with the substantial reduction in their investment prices, have made solar-biomass hybrid plants an increasingly appealing choice for supplying the world’s energy needs. This study evaluates the performance of a PV/biomass hybrid renewable energy system (HRES) that incorporates three distinct biomass processes, including pyrolysis, direct combustion, and gasification. The hybrid system is modeled employing the multi-objective genetic algorithm (MOGA). The most excellent layout is tabbed based on factors such as the largest proportion of green energy and the least amount of noxious emissions, as well as the minimum cost of energy (COE) and net present cost (NPC). The COE in the pyrolysis system is 17% and 38% lower than in scenarios 1 and 2, respectively. The decrease in NPC and overall system cost, which demonstrates 17% and 65% drops in NPC and 15% and 37.5% decreases in total system cost, respectively, as compared to scenarios 1 and 2. After comparing all the essential aspects, it is revealed that the HRES incorporating biomass pyrolysis is preferable to the most cost-effective option for making hybrid systems than other HRESs executed up of gasifier or direct combustion biomass technologies. This idea would improve the use of biomass resources in HRES by including the foremost biomass power production technology, making it simpler for researchers to identify the paramount hybrid renewable energy systems and create decisive HRES using biomass as the main source.
   
     
 
       

Author Related Publications

  • Mohamed Alsayed Lotfy Elsayed Abozyd, "Techno-economic configuration of a hybrid backup system within a microgrid considering vehicle-to-grid technology: A case study of a remote area", ELSEVIER, 2023 More
  • Mohamed Alsayed Lotfy Elsayed Abozyd, "Hybrid Genetic Algorithm Fuzzy-Based Control Schemes for Small Power System with High-Penetration Wind Farms", MDPI AG ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND, 2018 More
  • Mohamed Alsayed Lotfy Elsayed Abozyd, "Robust Load Frequency Control Schemes in Power System Using Optimized PID and Model Predictive Controllers", MDPI AG ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND, 2018 More
  • Mohamed Alsayed Lotfy Elsayed Abozyd, "Load Frequency Control Using Demand Response and Storage Battery by Considering Renewable Energy Sources", MDPI AG ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND, 2018 More
  • Mohamed Alsayed Lotfy Elsayed Abozyd, "Optimal sizing and placement of rooftop solar photovoltaic at Kabul city real distribution network", .The Institution of Engineering and Technology, England, 2018 More

Department Related Publications

  • Raef Seam Sayed Ahmed, "Model predictive control algorithm for fault ride-through of stand-alone microgrid inverter", Elsevier Ltd., 2021 More
  • Enas Ahmed Mohamed Abdelhay, "Recent Maximum Power Point Tracking Methods for Wind Energy Conversion System", Elsevier, 2024 More
  • Raef Seam Sayed Ahmed, "Optimal design and analysis of DC–DC converter with maximum power controller for stand-alone PV system", Elsevier Ltd., 2021 More
  • Raef Seam Sayed Ahmed, "Parameters identification and optimization of photovoltaic panels under real conditions using Lambert W-function", Elsevier Ltd., 2021 More
  • Mohammed Abdelhamied Abdelnaeem , "Artificial ecosystem-based optimiser to electrically characterise PV generating systems under various operating conditions reinforced by experimental validations", Wiley, 2021 More
Tweet