Enhancement of mechanical and physical properties of Cu–Ni composites by various contents of Y2O3 reinforcement

Faculty Engineering Year: 2024
Type of Publication: ZU Hosted Pages:
Authors:
Journal: Journal of Materials Research and Technology elseiver Volume:
Keywords : Enhancement , mechanical , physical properties , Cu–Ni composites    
Abstract:
The increasing demand for materials possessing enhanced mechanical strength, high thermal conductivity, and excellent electrical properties has grown significantly. Cu-matrix composites, especially Cu– Ni, present a promising candidate to fulfill these demands. In this study, Cu–Ni composites were successfully synthesized using powder metallurgy with various additions (0–1.5 wt%) of Yttria (Y2O3)-reinforcement aiming to enhance their mechanical, thermal, and electrical properties. The microstructural investigations demonstrated a uniform distribution of Y2O3 particles and a slight increase in porosity of the Cu–Ni matrix. The Cu–Ni composites with 1.5 wt% Y2O3 showed the presence of Cu2NiZn intermetallic compounds, potentially harming their physical and mechanical properties. Y2O3-reinforcement significantly increased the hardness and led to a moderate rise in the yield and ultimate compressive strengths. The results indicated that the Cu–Ni matrix without Y2O3-reinforcement had the highest coefficient of thermal expansion, which decreased with the addition of Y2O3, potentially leading to improved thermal properties of Cu–Ni composites. This study puts an emphasis on the importance of Y2O3 particles dispersion and on the extent of porosity in enhancing the thermal and mechanical properties of Cu–Ni composites.
   
     
 
       

Author Related Publications

  • Walaa AbdelAzim Abdulaziz AbdelAal, "Microstructure evolution and mechanical properties of Al/Al–12%Si (multilayer processed by accumulative roll bonding (ARB", ScienceDirect, 2015 More
  • Walaa AbdelAzim Abdulaziz AbdelAal, "Effect of surface roughness due to wire brushing on cold roll bonding of Al 1050 sheets", كلية الهندسة, 2015 More
  • Walaa AbdelAzim Abdulaziz AbdelAal, "Grain size affecting the deformation characteristics via micro-injection upsetting", springer, 2021 More
  • Walaa AbdelAzim Abdulaziz AbdelAal, "Synthesis and Characterization of Hybrid Fiber-Reinforced Polymer by Adding Ceramic Nanoparticles for Aeronautical Structural Applications", MDPI, 2021 More
  • Walaa AbdelAzim Abdulaziz AbdelAal, "Metallurgical analysis of ASME SA213 T12 boiler vertical water-wall tubes failure", elsevier, 2023 More

Department Related Publications

  • Samia Fawzy Saad Salam, "تأثير لزوجه المواد الداخليه على تصرف الأجسام المتلامسه المرنه ذات السطوح الخشنه ومتعدده الطبقات ", لايوجد, 1900 More
  • Adel Fathy Meselhy Ibrahiem, "Fabrication and Properties of copper-alumina nanocomposite by mechano-chemical routes", لايوجد, 1900 More
  • Ashraf Abdelfattah Ali Hassanein, "Self Assembled Ultra Fine Carbon Coils by Wet Electro-Spinning", Materials Letters, 2006; 60: 2858-2862, 2006 More
  • Ashraf Abdelfattah Ali Hassanein, "New generation of super absorber nano fibroses hybrid fabric by electro-spinning", Journal of Materials Processing Technology, 2008; 199: 193-198, 2008 More
  • Ashraf Abdelfattah Ali Hassanein, "Wet Electrospun CuNP/Carbon Ultra Fine Coils for Super Air Core Inductors", ICCE-19 Conference, Shanghai, China, 24-30 July 2011. Also, World Journal of Engineering, Supplement 3, 2010: 37-40., 2010 More
Tweet