Experimental validation of a novel hybrid Equilibrium Slime Mould Optimization for solar photovoltaic system

Faculty Engineering Year: 2024
Type of Publication: ZU Hosted Pages:
Authors:
Journal: Heliyon ELSEVIER Volume: 10
Keywords : Experimental validation , , novel hybrid Equilibrium Slime    
Abstract:
Maximizing Power Point Tracking (MPPT) is an essential technique in photovoltaic (PV) systems that guarantees the highest potential conversion of sunlight energy under any irradiance changes. Efficient and reliable MPPT technique is a challenge faced by researchers due to factors such as fluctuations in irradiance and the presence of partial shading. This paper introduced a novel hybrid Equilibrium Slime Mould Optimization (ESMO) MPPT-based algorithm combining the advantages of two recent algorithms, Slime Mould Optimization (SMO) and Equilibrium Optimizer (EO). The ESMO algorithm is compared with highly efficient MPPT-based techniques such as SMO, EO, Particle Swarm Optimization (PSO), Grey Wolf Optimization (GWO), and Whale Optimization Algorithm (WOA), both under a Simulink environment and a real-time experimental laboratory setup using a Dspace1104 controller and PV emulator. The comparison focuses on performance under several irradiance cases, including instant irradiance change, partial shading, complex partial shading, and dynamic partial shading. The key advantage of ESMO is the fact that it has a single tunable parameter, which makes implementation much easier and, at the same time, reduces the computational resources that are required by the control system. Extensive testing proves the superiority of ESMO over all other techniques, the average efficiency of which is 99.98% under all conditions. Additionally, ESMO provides fast average tracking times of 244 ms under simulation experiments and 200 ms for real-time experiments. These results show that ESMO can be very important for future implementation in large-scale solar PV systems.
   
     
 
       

Author Related Publications

  • Hytham Saad Mohamed Ramadan, "Efficient and Sustainable Reconfiguration of Distribution Networks via Metaheuristic Optimization", IEEE, 2022 More
  • Hytham Saad Mohamed Ramadan, "Efficient experimental energy management operating for FC/battery/SC vehicles via hybrid Artificial Neural Networks-Passivity Based Control", ELSEVIER, 2021 More
  • Hytham Saad Mohamed Ramadan, "Hydrogen storage technologies for stationary and mobile applications: Review, analysis and perspectives", ELSEVIER, 2021 More
  • Hytham Saad Mohamed Ramadan, "Efficient metaheuristic utopia-based multi-objective solutions of optimal battery-mix storage for microgrids", ELSEVIER, 2021 More
  • Hytham Saad Mohamed Ramadan, "Optimal reconfiguration for vulnerable radial smart grids under uncertain operating conditions", ELSEVIER, 2021 More

Department Related Publications

  • Raef Seam Sayed Ahmed, "Model predictive control algorithm for fault ride-through of stand-alone microgrid inverter", Elsevier Ltd., 2021 More
  • Enas Ahmed Mohamed Abdelhay, "Recent Maximum Power Point Tracking Methods for Wind Energy Conversion System", Elsevier, 2024 More
  • Raef Seam Sayed Ahmed, "Optimal design and analysis of DC–DC converter with maximum power controller for stand-alone PV system", Elsevier Ltd., 2021 More
  • Raef Seam Sayed Ahmed, "Parameters identification and optimization of photovoltaic panels under real conditions using Lambert W-function", Elsevier Ltd., 2021 More
  • Mohammed Abdelhamied Abdelnaeem , "Artificial ecosystem-based optimiser to electrically characterise PV generating systems under various operating conditions reinforced by experimental validations", Wiley, 2021 More
Tweet