Estimation of solar cell parameters through utilization of adaptive sine–cosine particle swarm optimization algorithm

Faculty Engineering Year: 2024
Type of Publication: ZU Hosted Pages:
Authors:
Journal: Neural Computing and Applications Springer Nature Volume:
Keywords : Estimation , solar cell parameters through utilization    
Abstract:
Due to the growing demand for clean and sustainable energy sources, there has been an increasing interest in solar cells and photovoltaic panels. Nevertheless, determining the right design parameters to achieve the most efficient energy output that aligns with the energy system’s needs can be quite challenging. This complexity arises from the intricate models and the inherent inaccuracies in the available information. To tackle this challenge, this paper introduces the adaptive sine–cosine particle swarm optimization algorithm (ASCA-PSO) as a method for estimating the parameters of solar cells and photovoltaic modules. The ASCA-PSO approach combines the strengths of the SCA and PSO algorithms in a two-tier process. In this process, SCA search agents explore the search space, while the PSO search agents leverage the outcomes derived from SCA exploration. This study evaluates the effectiveness of ASCA-PSO in accurately estimating the parameters of single- and double-diode models using data from two commercial solar cells. The findings are compared with those of cutting-edge methods. It is demonstrated that ASCA-PSO can identify global solutions for multifaceted and intricate objective functions. Furthermore, it proves to be a viable option for designing solar cells even in the presence of noise.
   
     
 
       

Author Related Publications

  • Ahmed Mohamed Helmy Elsadiek, "Efficient and Sustainable Reconfiguration of Distribution Networks via Metaheuristic Optimization", IEEE, 2022 More
  • Ahmed Mohamed Helmy Elsadiek, "LCMFO: An Improved Moth-Flame Algorithm for Combinatorial Optimization Problems", International Journal of Engineering and Technology, 2018 More
  • Ahmed Mohamed Helmy Elsadiek, "Adaptive Sine Cosine Optimization Algorithm Integrated with Particle Swarm for Pairwise Local Sequence Alignment.", Elsevier, 2018 More
  • Ahmed Mohamed Helmy Elsadiek, "Pairwise Global Sequence Alignment Using Sine-Cosine Optimization Algorithm.", Springer, Cham., 2018 More
  • Ahmed Mohamed Helmy Elsadiek, "Two Layer Hybrid Scheme of IMO and PSO for Optimization of Local Aligner: COVID-19 as a Case Study", Springer, 2021 More

Department Related Publications

  • Mira Magdy Sobhy Suliman, "COMPARISON BETWEEN HAAR WAVELET TRANSFORM, DCT AND A PROPOSED COLUMN-MEAN-METHOD BASED IRIS ENCODERS", جامعة الزقازيق-المجلة العلمية, 2014 More
  • Ahmed Mohamed Helmy Elsadiek, "Efficient and Sustainable Reconfiguration of Distribution Networks via Metaheuristic Optimization", IEEE, 2022 More
  • Sarah Khalil Mohamed Ibrahim, "Study of Climate Change Detection in North-East Africa Using Machine Learning and Satellite Data", IEEE, 2021 More
  • Ibrahiem Elsayed Mohamed Zedan, "Improved subspace identication with prior information using constrained least-squares", IET, 2011 More
  • Ahmed Mahmoud Abdelrahman Elanany, "Improved subspace identication with prior information using constrained least-squares", IET, 2011 More
Tweet