Zagazig University Digital Repository
Home
Thesis & Publications
All Contents
Publications
Thesis
Graduation Projects
Research Area
Research Area Reports
Search by Research Area
Universities Thesis
ACADEMIC Links
ACADEMIC RESEARCH
Zagazig University Authors
Africa Research Statistics
Google Scholar
Research Gate
Researcher ID
CrossRef
Estimation of solar cell parameters through utilization of adaptive sine–cosine particle swarm optimization algorithm
Faculty
Engineering
Year:
2024
Type of Publication:
ZU Hosted
Pages:
Authors:
Ahmed Mohamed Helmy Elsadiek
Staff Zu Site
Abstract In Staff Site
Journal:
Neural Computing and Applications Springer Nature
Volume:
Keywords :
Estimation , solar cell parameters through utilization
Abstract:
Due to the growing demand for clean and sustainable energy sources, there has been an increasing interest in solar cells and photovoltaic panels. Nevertheless, determining the right design parameters to achieve the most efficient energy output that aligns with the energy system’s needs can be quite challenging. This complexity arises from the intricate models and the inherent inaccuracies in the available information. To tackle this challenge, this paper introduces the adaptive sine–cosine particle swarm optimization algorithm (ASCA-PSO) as a method for estimating the parameters of solar cells and photovoltaic modules. The ASCA-PSO approach combines the strengths of the SCA and PSO algorithms in a two-tier process. In this process, SCA search agents explore the search space, while the PSO search agents leverage the outcomes derived from SCA exploration. This study evaluates the effectiveness of ASCA-PSO in accurately estimating the parameters of single- and double-diode models using data from two commercial solar cells. The findings are compared with those of cutting-edge methods. It is demonstrated that ASCA-PSO can identify global solutions for multifaceted and intricate objective functions. Furthermore, it proves to be a viable option for designing solar cells even in the presence of noise.
Author Related Publications
Ahmed Mohamed Helmy Elsadiek, "Efficient and Sustainable Reconfiguration of Distribution Networks via Metaheuristic Optimization", IEEE, 2022
More
Ahmed Mohamed Helmy Elsadiek, "LCMFO: An Improved Moth-Flame Algorithm for Combinatorial Optimization Problems", International Journal of Engineering and Technology, 2018
More
Ahmed Mohamed Helmy Elsadiek, "Adaptive Sine Cosine Optimization Algorithm Integrated with Particle Swarm for Pairwise Local Sequence Alignment.", Elsevier, 2018
More
Ahmed Mohamed Helmy Elsadiek, "Pairwise Global Sequence Alignment Using Sine-Cosine Optimization Algorithm.", Springer, Cham., 2018
More
Ahmed Mohamed Helmy Elsadiek, "Two Layer Hybrid Scheme of IMO and PSO for Optimization of Local Aligner: COVID-19 as a Case Study", Springer, 2021
More
Department Related Publications
Mira Magdy Sobhy Suliman, "COMPARISON BETWEEN HAAR WAVELET TRANSFORM, DCT AND A PROPOSED COLUMN-MEAN-METHOD BASED IRIS ENCODERS", جامعة الزقازيق-المجلة العلمية, 2014
More
Ahmed Mohamed Helmy Elsadiek, "Efficient and Sustainable Reconfiguration of Distribution Networks via Metaheuristic Optimization", IEEE, 2022
More
Sarah Khalil Mohamed Ibrahim, "Study of Climate Change Detection in North-East Africa Using Machine Learning and Satellite Data", IEEE, 2021
More
Ibrahiem Elsayed Mohamed Zedan, "Improved subspace identication with prior information using constrained least-squares", IET, 2011
More
Ahmed Mahmoud Abdelrahman Elanany, "Improved subspace identication with prior information using constrained least-squares", IET, 2011
More
جامعة المنصورة
جامعة الاسكندرية
جامعة القاهرة
جامعة سوهاج
جامعة الفيوم
جامعة بنها
جامعة دمياط
جامعة بورسعيد
جامعة حلوان
جامعة السويس
شراقوة
جامعة المنيا
جامعة دمنهور
جامعة المنوفية
جامعة أسوان
جامعة جنوب الوادى
جامعة قناة السويس
جامعة عين شمس
جامعة أسيوط
جامعة كفر الشيخ
جامعة السادات
جامعة طنطا
جامعة بنى سويف