Titanium-Based alloys and composites for orthopedic implants Applications: A comprehensive review

Faculty Engineering Year: 2024
Type of Publication: ZU Hosted Pages:
Authors:
Journal: Materials & Design elseiver Volume:
Keywords : Titanium-Based alloys , composites , orthopedic implants Applications:    
Abstract:
The increasing demand for orthopedic implants has driven the search for materials that combine strength, biocompatibility, and long lifetime. Compared to stainless steel and Co-Cr-based alloys, titanium (Ti) and its alloys are favored for biomedical implants because of their high strength, corrosion resistance, and biocompatibility. This comprehensive review delivers a wide overview of the field of Ti-based biomaterials for orthopedic implants applications, focusing on their types, mechanical and chemical resistance, surface modifications, innovations in fabrication techniques, Ti matrix composites, and machine learning (ML) advancements. Ti alloys of different crystalline phases, including α, near-α, (α + β), β, and shape memory alloys, offer diverse options for orthopedic applications. Strengthening properties, wear, fatigue, and corrosion resistance are crucial factors influencing the performance and reliability of Ti implants. Moreover, this review discussed the challenges to Ti-based biomaterial durability through surface modifications to enhance their biofunction, wear resistance, corrosion resistance, and antibacterial properties. Recent developments in fabrication techniques for Ti-based biomaterials are also discussed. Eventually, this review investigated how ML revolutionized Ti orthopedic implants by providing insights into the behavior of new alloys, aiding in manufacturing optimization, allowing for real-time quality control, and advancing the development of personalized, biocompatible, and reliable implants.
   
     
 
       

Author Related Publications

  • Walaa AbdelAzim Abdulaziz AbdelAal, "Microstructure evolution and mechanical properties of Al/Al–12%Si (multilayer processed by accumulative roll bonding (ARB", ScienceDirect, 2015 More
  • Walaa AbdelAzim Abdulaziz AbdelAal, "Effect of surface roughness due to wire brushing on cold roll bonding of Al 1050 sheets", كلية الهندسة, 2015 More
  • Walaa AbdelAzim Abdulaziz AbdelAal, "Grain size affecting the deformation characteristics via micro-injection upsetting", springer, 2021 More
  • Walaa AbdelAzim Abdulaziz AbdelAal, "Synthesis and Characterization of Hybrid Fiber-Reinforced Polymer by Adding Ceramic Nanoparticles for Aeronautical Structural Applications", MDPI, 2021 More
  • Walaa AbdelAzim Abdulaziz AbdelAal, "Metallurgical analysis of ASME SA213 T12 boiler vertical water-wall tubes failure", elsevier, 2023 More

Department Related Publications

  • Soliman Soliman Soliman Alieldien, "A first-order shear deformation finite element model for elastostatic analysis of laminated composite plates and the equivalent functionally graded plates", Ain Shams Engineering Journal, 2011 More
  • Soliman Soliman Soliman Alieldien, "Size-dependent analysis of functionally graded ultra-thin films", Structural Engineering and Mechanics, Vol. 44, No. 4 (2012) 431-448, 2012 More
  • Soliman Soliman Soliman Alieldien, "Bending Analysis of Ultra-thin Functionally Graded Mindlin Plates Incorporating Surface Energy Effects", International Journal of Mechanical Sciences, 2013 More
  • Soliman Soliman Soliman Alieldien, "Finite element analysis of functionally graded nano-scale films", Finite Elements in Analysis and Design, 2013 More
  • Soliman Soliman Soliman Alieldien, "Finite Element Analysis of the Deformation of Functionally Graded Plates under Thermomechanical Loads", Mathematical Problems in Engineering, 2013 More
Tweet