Cross vision transformer with enhanced Growth Optimizer for breast cancer detection in IoMT environment

Faculty Science Year: 2024
Type of Publication: ZU Hosted Pages:
Authors:
Journal: Computational Biology and Chemistry Elsevier Volume:
Keywords : Cross vision transformer with enhanced Growth    
Abstract:
The recent advances in artificial intelligence modern approaches can play vital roles in the Internet of Medical Things (IoMT). Automatic diagnosis is one of the most important topics in the IoMT, including cancer diagnosis. Breast cancer is one of the top causes of death among women. Accurate diagnosis and early detection of breast cancer can improve the survival rate of patients. Deep learning models have demonstrated outstanding potential in accurately detecting and diagnosing breast cancer. This paper proposes a novel technology for breast cancer detection using CrossViT as the deep learning model and an enhanced version of the Growth Optimizer algorithm (MGO) as the feature selection method. CrossVit is a hybrid deep learning model that combines the strengths of both convolutional neural networks (CNNs) and transformers. The MGO is a meta-heuristic algorithm that selects the most relevant features from a large pool of features to enhance the performance of the model. The developed approach was evaluated on three publicly available breast cancer datasets and achieved competitive performance compared to other state-of-the-art methods. The results show that the combination of CrossViT and the MGO can effectively identify the most informative features for breast cancer detection, potentially assisting clinicians in making accurate diagnoses and improving patient outcomes. The MGO algorithm improves accuracy by approximately 1.59% on INbreast, 5.00% on MIAS, and 0.79% on MiniDDSM compared to other methods on each respective dataset. The developed approach can also be utilized to improve the Quality of Service (QoS) in the healthcare system as a deployable IoT-based intelligent solution or a decision-making assistance service, enhancing the efficiency and precision of the diagnosis.
   
     
 
       

Author Related Publications

  • Mohamed El Sayed Ahmed Muhamed, "A Grunwald–Letnikov based Manta ray foraging optimizer for global optimization and image segmentation", Elsevier, 2020 More
  • Mohamed El Sayed Ahmed Muhamed, "A novel hybrid gradient-based optimizer and grey wolf optimizer feature selection method for human activity recognition using smartphone sensors", MDPI, 2021 More
  • Mohamed El Sayed Ahmed Muhamed, "Efficient schemes for playout latency reduction in P2P-VOD systems", Springer, 2018 More
  • Mohamed El Sayed Ahmed Muhamed, "a novel algorithm for source localization based on nonnegative matrix factroization using \alpha 'beta divergence in chochleagram", WSEAS, 2013 More
  • Mohamed El Sayed Ahmed Muhamed, "Open cluster membership probability based on K-means clustering algorithm", Springer, 2016 More

Department Related Publications

  • Hany Samih Bayoumi Ibrahim, "Passive and active controllers for suppressing the torsional vibration of multiple-degree-of-freedom system", Sage, 2014 More
  • Ahmed Mohamed Khedr Souliman, "SEP-CS: Effective Routing Protocol for Heterogeneous Wireless Sensor Networks", Ad Hoc & Sensor Wireless Networks, 2012 More
  • Ahmed Mohamed Khedr Souliman, "Minimum connected cover of a query region in heterogeneous wireless sensor networks", Information Sciences, 2013 More
  • Ahmed Mohamed Khedr Souliman, "IBLEACH: intra-balanced LEACH protocol for wireless sensor networks", Wireless Netw, 2014 More
  • Ahmed Mohamed Khedr Souliman, "AGENTS FOR INTEGRATING DISTRIBUTED DATA FOR FUNCTION COMPUTATIONS", Computing and Informatics,, 2012 More
Tweet