Single Valued Neutrosophic HyperSoft Set based on VIKOR Method for 5G Architecture Selection

Faculty Computer Science Year: 2024
Type of Publication: ZU Hosted Pages:
Authors:
Journal: International Journal of Neutrosophic Science ASPG Volume:
Keywords : Single Valued Neutrosophic HyperSoft , based , VIKOR    
Abstract:
This work introduces the framework for selecting architecture in 5G networks, considering various technological, performance, economic, and operational factors. With the emergence of 5G technology, the architecture selection process has become pivotal in meeting diverse requirements for ultra-high-speed connectivity, low latency, scalability, and diverse service demands. The evaluation comprehensively analyses different architecture options, including centralized, distributed, cloud-based, and virtualized architectures. Factors such as network performance, scalability, cost-effectiveness, security, and compatibility are considered within a multi-criteria decision-making framework. Findings reveal each architecture option's diverse strengths and limitations, emphasizing the importance of aligning architectural choices with specific use cases, deployment scenarios, and business objectives. We used the concept of multi-criteria decision-making (MCDM) methodology to control the various criteria. We used the single-valued neutrosophic set (SVNS) to deal with vague and inconsistent data. The SVNS is integrated with the hyperSoft set. The proposed methodology uses a single-valued neutrosophic hyperSoft set (SVNHSS) to select the best 5G architecture. We used the VIKOR method as an MCDM method to rank the alternatives. The proposed framework provides stakeholders with a structured methodology to evaluate and prioritize architecture options, facilitating informed decision-making in the complex landscape of 5G network deployments.
   
     
 
       

Author Related Publications

    Department Related Publications

    • Saber Mohamed, "A surrogate-assisted differential evolution algorithm with dynamic parameters selection for solving expensive optimization problems", IEEE, 2014 More
    • Saber Mohamed, "Differential Evolution Combined with Constraint Consensus for Constrained Optimization", IEEE, 2011 More
    • mahmoud mohamed ismail ali, "AN EFFICIENT Hybrid Swarm Intelligence Technique for Solving Integer Programming", International Journal of Computers & Technology, 2013 More
    • mahmoud mohamed ismail ali, "A Hybrid Swarm Intelligence Technique for Solving Integer Multi-objective Problems", international journal of computer applications, 2014 More
    • mahmoud mohamed ismail ali, "An Improved Chaotic Flower Pollination Algorithm for Solving Large Integer Programming Problems", International Journal of Digital Content Technology and its Applications, 2014 More
    Tweet