An efficient decision-making model for evaluating irrigation systems under uncertainty: Toward integrated approaches to sustainability

Faculty Computer Science Year: 2024
Type of Publication: ZU Hosted Pages:
Authors:
Journal: Agricultural Water Management Elsevier Volume:
Keywords : , efficient decision-making model , evaluating irrigation systems    
Abstract:
Agriculture is essential for many countries that depend on crops for food production and security. So, evaluating irrigation systems and selecting the best one is critical and gives various benefits such as water use efficiency, productivity, and agricultural development. This paper proposed a framework for conserving water and increasing effectiveness by using a suitable irrigation system. We used the multi-criteria decision-making (MCDM) methodology to deal with conflict criteria in the evaluation process. We used two MCDM methods such as Criteria Importance Through Inter-Criteria Correlation (CRITIC) method to compute the weights of the irrigation system criteria, and the spherical fuzzy double normalization-based multiple aggregations (DNMA) method to rank the irrigation systems (alternatives). The main advantage of CRITIC method computes the conflict and variability of the criteria by calculate weights of them. The main advantage of DNMA is used the two normalization method to rank the alternatives. These methods are integrated with spherical fuzzy set (SFS) fuzzy information in the assessment process. It has three values: membership, non-membership, and hesitant degrees to overcome uncertainty in the assessment steps. The proposed methodology is applied to a case study to show its performance. This study used 20 criteria of irrigation systems and 10 irrigation systems (alternatives) to select the best alternative. The results are discussed from the perspective of five experts. The sensitivity analysis is conducted to show the stability of the results. The comparative analysis is performed to show the validity and effectiveness of the proposed methodology. The results show the proposed methodology is more robust compared to other methods.
   
     
 
       

Author Related Publications

  • Mohammed Abdel Basset Metwally Attia, "Discrete greedy flower pollination algorithm for spherical traveling salesman problem", Springer, 2019 More
  • Mohammed Abdel Basset Metwally Attia, "A New Hybrid Flower Pollination Algorithm for Solving Constrained Global Optimization Problems", Natural Sciences Publishing Cor., 2014 More
  • Mohammed Abdel Basset Metwally Attia, "A novel equilibrium optimization algorithm for multi-thresholding image segmentation problems", Springer London, 2021 More
  • Mohammed Abdel Basset Metwally Attia, "An efficient binary slime mould algorithm integrated with a novel attacking-feeding strategy for feature selection", Pergamon, 2021 More
  • Mohammed Abdel Basset Metwally Attia, "An efficient teaching-learning-based optimization algorithm for parameters identification of photovoltaic models: Analysis and validations", Pergamon, 2021 More

Department Related Publications

  • Mohammed Abdel Basset Metwally Attia, "Discrete greedy flower pollination algorithm for spherical traveling salesman problem", Springer, 2019 More
  • Mohammed Abdel Basset Metwally Attia, "A New Hybrid Flower Pollination Algorithm for Solving Constrained Global Optimization Problems", Natural Sciences Publishing Cor., 2014 More
  • Saber Mohamed, "Training and Testing a Self-Adaptive Multi-Operator Evolutionary Algorithm for Constrained Optimization", ELSEVEIR, 2015 More
  • Saber Mohamed, "An Improved Self-Adaptive Differential Evolution Algorithm for Optimization Problems", IEEE, 2013 More
  • Saber Mohamed, "Differential Evolution with Dynamic Parameters Selection for Optimization Problems", IEEE, 2014 More
Tweet