Sustainable smart system for vegetables plant disease detection: Four vegetable case studies

Faculty Computer Science Year: 2024
Type of Publication: ZU Hosted Pages:
Authors:
Journal: Computers and Electronics in Agriculture Elsevier Volume:
Keywords : Sustainable smart system , vegetables plant disease    
Abstract:
Agriculture is the backbone of the country’s economy. People depend on agriculture for food and exporting to generate income. However, agriculture faces various diseases that affect the quantity and quality of vegetables. Therefore, it is important to propose a model for detecting vegetable diseases. This study proposed a sustainable smart system for vegetable disease detection and classification. This system detects early vegetable diseases in common vegetables such as tomato, potato, lettuce, and cucumber. The study employed deep learning (DL) models to detect and classify vegetable diseases. Convolutional neural networks (CNN) are a type of DL model used for image classification. This study utilizes CNN and other extensions, such as VGG16 and MobileNet, for plant image classification. Three DL models were trained on four datasets for tomato disease classification, potato disease classification, lettuce disease classification, and cucumber disease classification. The results show that the three models achieved 84.49% accuracy on the tomato disease dataset, 97.65% accuracy on the cucumber disease dataset, 97% accuracy on the potato disease dataset, and 99.9% accuracy on the lettuce disease dataset. The proposed system can assist farmers in the early detection of vegetable diseases before they spread, and it can enhance agriculture by improving both the quality and quantity of products.
   
     
 
       

Author Related Publications

  • Mohammed Abdel Basset Metwally Attia, "Discrete greedy flower pollination algorithm for spherical traveling salesman problem", Springer, 2019 More
  • Mohammed Abdel Basset Metwally Attia, "A New Hybrid Flower Pollination Algorithm for Solving Constrained Global Optimization Problems", Natural Sciences Publishing Cor., 2014 More
  • Mohammed Abdel Basset Metwally Attia, "A novel equilibrium optimization algorithm for multi-thresholding image segmentation problems", Springer London, 2021 More
  • Mohammed Abdel Basset Metwally Attia, "An efficient binary slime mould algorithm integrated with a novel attacking-feeding strategy for feature selection", Pergamon, 2021 More
  • Mohammed Abdel Basset Metwally Attia, "An efficient teaching-learning-based optimization algorithm for parameters identification of photovoltaic models: Analysis and validations", Pergamon, 2021 More

Department Related Publications

  • Mohammed Abdel Basset Metwally Attia, "Discrete greedy flower pollination algorithm for spherical traveling salesman problem", Springer, 2019 More
  • Mohammed Abdel Basset Metwally Attia, "A New Hybrid Flower Pollination Algorithm for Solving Constrained Global Optimization Problems", Natural Sciences Publishing Cor., 2014 More
  • Saber Mohamed, "Training and Testing a Self-Adaptive Multi-Operator Evolutionary Algorithm for Constrained Optimization", ELSEVEIR, 2015 More
  • Saber Mohamed, "An Improved Self-Adaptive Differential Evolution Algorithm for Optimization Problems", IEEE, 2013 More
  • Saber Mohamed, "Differential Evolution with Dynamic Parameters Selection for Optimization Problems", IEEE, 2014 More
Tweet