Novel hybrid kepler optimization algorithm for parameter estimation of photovoltaic modules

Faculty Computer Science Year: 2024
Type of Publication: ZU Hosted Pages:
Authors:
Journal: Scientific Reports Springer Nature Volume:
Keywords : Novel hybrid kepler optimization algorithm , parameter    
Abstract:
The parameter identification problem of photovoltaic (PV) models is classified as a complex nonlinear optimization problem that cannot be accurately solved by traditional techniques. Therefore, metaheuristic algorithms have been recently used to solve this problem due to their potential to approximate the optimal solution for several complicated optimization problems. Despite that, the existing metaheuristic algorithms still suffer from sluggish convergence rates and stagnation in local optima when applied to tackle this problem. Therefore, this study presents a new parameter estimation technique, namely HKOA, based on integrating the recently published Kepler optimization algorithm (KOA) with the ranking-based update and exploitation improvement mechanisms to accurately estimate the unknown parameters of the third-, single-, and double-diode models. The former mechanism aims at promoting the KOA’s exploration operator to diminish getting stuck in local optima, while the latter mechanism is used to strengthen its exploitation operator to faster converge to the approximate solution. Both KOA and HKOA are validated using the RTC France solar cell and five PV modules, including Photowatt-PWP201, Ultra 85-P, Ultra 85-P, STP6-120/36, and STM6-40/36, to show their efficiency and stability. In addition, they are extensively compared to several optimization techniques to show their effectiveness. According to the experimental findings, HKOA is a strong alternative method for estimating the unknown parameters of PV models because it can yield substantially different and superior findings for the third-, single-, and double-diode models.
   
     
 
       

Author Related Publications

    Department Related Publications

    • Saber Mohamed, "Self-adaptive Mix of Particle Swarm Methodologies for Constrained Optimization", ELSEVIER, 2014 More
    • Saber Mohamed, "Testing United Multi-Operator Evolutionary Algorithms on The CEC2014 Real-Parameter Numerical Optimization", IEEE, 2014 More
    • Saber Mohamed, "GA with a New Multi-Parent Crossover for Constrained Optimization", IEEE, 2011 More
    • Eman samir hasan sayed, "Decision Making Assessment for Site Selection Using the AHP and TOPSIS Methods", Statistical studies institution, Cairo University, Egypt, 2007 More
    • Israa Abdel Ghaffar Salem Mohammed, "Estimating Bed Requirements for a Pediatric Department in a University Hospital in Egypt", Modern Management Science & Engineering, 2016 More
    Tweet