Flexural behavior of two-layer reinforced concrete slab with hollow cores

Faculty Engineering Year: 2024
Type of Publication: ZU Hosted Pages:
Authors:
Journal: Advances in Mechanical Engineering SAG Volume:
Keywords : Flexural behavior , two-layer reinforced concrete slab with hollow    
Abstract:
Flexural behavior of a concrete slab system with an optimal weight-to-strength ratio comprising layered and hollow-core slab structures was investigated using two-layered slabs with hollow cores (LS/HCS). Six slabs with dimensions of 180, 450, and 1600 mm were tested experimentally and numerically using ANSYS software. Each layered slab comprises a 90-mm-thick lightweight concrete bottom layer and a 90-mm-thick high-strength concrete top layer. Three parameters were studied: core diameter (58, 86, and 110 mm), reinforcement ratio (0.37%, 0.53%, 0.95%), and treatment type (bonding agent, nails). Treatment types were analyzed via push-out testing; both nails and agents connected the slabs with sufficient bond strength. A control slab with 86-mm core diameter, shear-span-to-effective-depth ratio of 4, reinforcement ratio of 0.53%, and agent material was used. Concrete, steel bars, and loading support plates were modeled using SOLID65, LINK180, and SOLID185 elements, respectively. Analytical results were validated experimentally. A parametric study analyzed other parameters affecting LS/HCS behavior, including compressive strength, opening numbers, core shape, applied loading type, added top steel reinforcement, slab type, and slab height. Core diameter reduction, increased reinforcement ratios, and using nails enhanced the failure load. The LS/HCS gives an optimum weight-tostrength ratio with a 33.672% reduction compared with solid slabs.
   
     
 
       

Author Related Publications

  • Ahmed Samir Abdallah Eisa, "Mechanical properties of fly ash based geopolymer concrete with full and partial cement replacement", Elsevier, 2016 More
  • Ahmed Samir Abdallah Eisa, "Mechanical and Fresh Properties of High Strength Self-Consolidating Concrete made with High Volumes of Supplementary Cementitious Materials", IOWA State University – Institute of Transportation, Center for Advanced Cement-Based Materials, ACBM, 2012 More
  • Ahmed Samir Abdallah Eisa, "Overview of Analytical Procedures to Predict Concrete Damage under Impulsive Loads", ASCE, 2012 More
  • Ahmed Samir Abdallah Eisa, "Flexural Behaviour of Steel Fibers Reinforced High Strength Self Compacting Concrete Slabs", International Journal of Engineering Inventions, IJEI, 2013 More
  • Ahmed Samir Abdallah Eisa, "Behavior of Reinforced Concrete Columns Strengthened using CFRP Sheets under Sustained Loading", Faculty of Engineering, Mansoura University, 2009 More

Department Related Publications

  • Elsayed saad Abdelsalam Salman, "S. Abdel Salam, A. Akl, O. Shallan, “DYNAMIC ANALYSIS OF TUNNEL”, Proceedings of the International Congress on Tunneling and ground Conditions, 3-7 April 1994, national Authority for Tunnels, Cairo, Egypt.", Proceedings of the International Congress on Tunneling and ground Conditions national Authority for Tunnels, Cairo, Egypt., 1994 More
  • Mohamed Salah Amin Abdelaal, "Ultrasonic characterization of expanded polystyrene used for shallow tunnels under seismic excitation", journal homepage: www.sciencedirect.com, 2022 More
  • Hanaa Alsayed Elsayed Abdelmoteleb, "Ultrasonic characterization of expanded polystyrene used for shallow tunnels under seismic excitation", journal homepage: www.sciencedirect.com, 2022 More
  • Sali Elsaid Abdelmageed Hassn, "Numerical analysis of underground tunnels subjected to surface blast loads", Frattura ed Integrità Strutturale, 2021 More
Tweet