Enhanced biochemical properties of soybean root nodule asparaginase through plant molecular farming compared to bacterial enzyme for cancer treatment

Faculty Science Year: 2024
Type of Publication: ZU Hosted Pages:
Authors:
Journal: RHIZOSPHERE ELSEVIER Volume:
Keywords : Enhanced biochemical properties , soybean root nodule    
Abstract:
Asparaginase is a therapeutic enzyme used as an anticancer agent and is typically produced through microbial fermentation using organisms such as Escherichia coli and Erwinia chrysanthemi. However, this method faces challenges, including potential enzyme contamination during production, allergic reactions to the enzyme, and stability issues requiring stringent control measures. An innovative solution is the application of plant molecular farming, utilizing Rhizobium root symbiosis for asparaginase production. The objective is to optimize nodule development for asparaginase yield, characterize the enzyme's properties, and evaluate its anticancer efficacy against microbial enzyme. In our study, we established soybean root cultures and inoculated them with Bradyrhizobium japonicum to form root nodules. We evaluated eukaryotic asparaginase production at different incubation times. We purified asparaginase from the root nodule cultures and compared its physicochemical properties and anticancer activity with microbial asparaginase. Results showed that asparaginase reached maximum activity in root nodule cultures 10 days after rhizobium inoculation in the culture media. The root nodule asparaginase exhibited a high content of alpha helices and beta sheets and a low random coil. It demonstrated higher stability and activity across different pH levels and temperatures than Escherichia coli asparaginase. Additionally, root nodule asparaginase displayed better catalytic parameters and stability over time than E. coli asparaginase. Thus, root nodule asparaginase is superior to E. coli asparaginase as an anticancer agent. This ensures the root nodule asparaginase can effectively target cancer cells, enhancing the overall therapeutic outcome. This provides a renewable, cost-effective, and environmentally friendly alternative to traditional enzyme production methods.
   
     
 
       

Author Related Publications

  • Diala Mohammed Najeeb Ahmed Youssef, "How plant Immune System Works?", Crimson Publisher, 2020 More
  • Diala Mohammed Najeeb Ahmed Youssef, "Phenol Removal from Wastewater using Waste Products", elsiever, 2020 More
  • Diala Mohammed Najeeb Ahmed Youssef, "Arginine, histidine and tryptophan: A new hope for cancer immunotherapy", elsiever, 2019 More
  • Diala Mohammed Najeeb Ahmed Youssef, "Anticancer effect of some fruits peels aqueous extracts", springer, 2019 More
  • Diala Mohammed Najeeb Ahmed Youssef, "Metabolic Profiling during germination of hydro primed cotton seeds", Elsevier (Science Direct), 2019 More

Department Related Publications

  • Siham Abdahafy Awadallah, "Antibacterial Activity of Essential Oil and Their Effects on Nile tilapia Fingerlings Performance.", Journal of medical Sciences., 2013 More
  • Siham Abdahafy Awadallah, "Effect of copper bearing Egyptian bentonite on the growth performance and intestinal microflora of rabbits.", The Journal of American Science., 2014 More
  • Shaima AbdulRahman Ismail Ezz, "Ecological Studies on Eclipta alba (L.) Hassk. at canal banks of Menia El-Kamh in Sharkia province, Egypt.", المؤتمر العلمى السنوى للبيئه, 2014 More
  • Hdiat Mohammed Hammad Salameh, "Ecophysiological studies of three desert plants growing in two different habitats, central region, Saudi Arabia", Saudi Arabia, 2014 More
  • Hdiat Mohammed Hammad Salameh, "Phytoremediation of the herbicide simazine by P450 transgenic tobacco plants.", السعودية, 2014 More
Tweet