Investigating Sulforaphane’s anti-virulence and anti-quorum sensing properties against Pseudomonas aeruginosa

Faculty Pharmacy Year: 2024
Type of Publication: ZU Hosted Pages:
Authors:
Journal: Frontiers in Pharmacology Frontiers Volume:
Keywords : Investigating Sulforaphane’s anti-virulence , anti-quorum sensing properties    
Abstract:
Background: P. aeruginosa, a significant bacterium, can cause severe illness and resistance to antibiotics. Quorum sensing (QS) systems regulate virulence factors production. Targeting QS could reduce bacteria pathogenicity and prevent antibiotic resistance. Cruciferous vegetables contain sulforaphane, known for its anti-inflammatory, antioxidant, anticancer, and antimicrobial properties. Aim: We aimed to examine the inhibitory influences of sulforaphane, at a sub-inhibitory concentration (¼ minimum inhibitory concentration, MIC), on virulence and QS in P. aeruginosa. Materials and methods: The sulforaphane’s anti-virulence actions at sub-inhibitory concentrations were explored in vitro and in vivo. A sub-MIC concentration of sulforaphane was combined with anti-pseudomonal drugs, and the results of this combination were assessed. The virtual affinity of sulforaphane for the receptors of QS was studied, and its effect on the expression of QS genes was quantified. Results: Sulforaphane significantly decreased the biofilm formation, motility, ability to withstand oxidative stress, and the synthesis of virulence extracellular enzymes such as proteases, hemolysins, and elastase, as well as other virulence factors like pyocyanin. In addition, sulforaphane lessened the severity of P. aeruginosa infection in mice. Sulforaphane reduced the antipseudomonal antibiotics’ MICs when used together, resulting in synergistic effects. The observed anti-virulence impacts were attributed to the ability of sulforaphane to inhibit QS via suppressing the QS genes’ expression. Conclusion: Sulforaphane shows promise as a potent anti-virulence and anti-QS agent that can be used alongside conventional antimicrobials to manage severe infections effectively. Furthermore, this study paves the way for further investigation of sulforaphan
   
     
 
       

Author Related Publications

  • Wael Mohamed Ali Ali Abdelhakiem, "Efficacy of SPG-ODN 1826 Nanovehicles in Inducing M1 Phenotype through TLR-9 Activation in Murine Alveolar J774A.1 Cells: Plausible Nano-Immunotherapy for Lung Carcinoma", MDPI, 2021 More
  • Wael Mohamed Ali Ali Abdelhakiem, "Xylitol Inhibits Growth and Blocks Virulence in Serratia marcescens", MDPI, 2021 More
  • Wael Mohamed Ali Ali Abdelhakiem, "Tackling Virulence of Pseudomonas aeruginosa by the Natural Furanone Sotolon", MDPI, 2021 More
  • Wael Mohamed Ali Ali Abdelhakiem, "Alteration of Salmonella enterica Virulence and Host Pathogenesis through Targeting sdiA by Using the CRISPR-Cas9 System", MDPI, 2021 More
  • Wael Mohamed Ali Ali Abdelhakiem, "Studies on Pseudomonas Cepacia Isolated from Cystic Fibrosis Patients and Narural Sourses. ", لايوجد, 1900 More

Department Related Publications

  • Mo'men Mahmoud Ezzelarab Abdelaziz Metwally Askoura, "Phenotypic, molecular, and in silico characterization of coumarin as carbapenemase inhibitor to fight carbapenem-resistant Klebsiella pneumoniae", Springer Nature, 2024 More
  • Galal Yehya Abdelreheem Metwally, "Phenotypic, molecular, and in silico characterization of coumarin as carbapenemase inhibitor to fight carbapenem-resistant Klebsiella pneumoniae", Springer Nature, 2024 More
  • Amira Mohamed Mohamed Ali Elganayny, "Phenotypic, molecular, and in silico characterization of coumarin as carbapenemase inhibitor to fight carbapenem-resistant Klebsiella pneumoniae", Springer Nature, 2024 More
  • Hemmat Kamal Abdelattef Ibrahiem, "Phenotypic, molecular, and in silico characterization of coumarin as carbapenemase inhibitor to fight carbapenem-resistant Klebsiella pneumoniae", Springer Nature, 2024 More
Tweet