Explainable deep inherent learning for multi-classes skin lesion classification

Faculty Computer Science Year: 2024
Type of Publication: ZU Hosted Pages:
Authors:
Journal: Applied Soft Computing Elsevier Volume:
Keywords : Explainable deep inherent learning , multi-classes skin    
Abstract:
There is often a lack of explanation when artificial intelligence (AI) is used to diagnose skin lesions, which makes the physician unable to interpret and validate the output; thus, diagnostic systems become significantly less safe. In this paper, we proposed a deep inherent learning method to classify seven types of skin lesions. The proposed deep inherent learning was validated using different explanation techniques. Explainable AI (X-AI) was used to explain decision-making processes at the local and global levels. In addition, we provide visual information to help physicians trust the proposed method. The challenging dataset, HAM10000, was used to evaluate the proposed method. Medical practitioners can better understand the mechanisms of black-box AI models using our simple, stage-based X-AI framework. They can trust the proposed method because the rationale for its decisions is explained.
   
     
 
       

Author Related Publications

  • Khalied Mohamed Hosny, "SEMANTIC REPRESENTATION OF MUSIC DATABASE USING NEW ONTOLOGY-BASED SYSTEM", Journal of Theoretical and Applied Information Technology, 2020 More
  • Khalied Mohamed Hosny, "Building a New Semantic Social Network Using Semantic Web-Based Techniques", ِASPG, 2021 More
  • Khalied Mohamed Hosny, "New Graphical Ultimate Processor for Mapping Relational Database to Resource Description Framework", IEEE, 2022 More
  • Khalied Mohamed Hosny, "Fast computation of accurate Zernike moments", Springer, 2008 More
  • Khalied Mohamed Hosny, "Accurate Computation of QPCET for Color Images in Different Coordinate Systems", SPIE, 2017 More

Department Related Publications

  • Abdallah Gamal abdallah mahmoud, "A Group Decision Making Framework Based on Neutrosophic TOPSIS Approach for Smart Medical Device Selection", Springer US, 2019 More
  • Ibrahiem Mahmoud Mohamed Elhenawy, "Improving crisis events detection using distilbert with hunger games search algorithm", MDPI, 2022 More
  • Abdallah Gamal abdallah mahmoud, "Modern Soft Computing: Techniques and Applications", 2024 More
  • Ibrahiem Mahmoud Mohamed Elhenawy, "Metaheuristic for Solving Global Optimization Problems", 2024 More
Tweet