Artificial intelligence-based masked face detection: A survey

Faculty Computer Science Year: 2024
Type of Publication: ZU Hosted Pages:
Authors:
Journal: Intelligent Systems with Applications Elsevier Volume:
Keywords : Artificial intelligence-based masked face detection: , survey    
Abstract:
The COVID-19 virus is causing a global pandemic. The total number of new coronavirus cases worldwide by the end of November 2020 had already surpassed 60 million. The World Health Organization (WHO) has determined that wearing masks is a crucial precaution during the COVID-19 epidemic to limit the growth of viruses, and facemasks are frequently seen in public places worldwide. Also, many public service providers wear face masks (covering their mouths and noses). These events brought attention to the need for automatic computer-vision-based object detection (masked face detection) methods to track public behavior. Therefore, it is necessary to develop tools for monitor people who have not used masks in public service areas in real-time. Reducing the spread of infectious diseases can occur when masked face detection techniques are used for authentication instead of mask removal for face matching. A superior framework of masked face detection could improve security systems and lower the rate of crime. Masked face detection is a computer vision method standard in people's daily lives to recognize, discover, and recognize masked faces in pictures and videos. This study provides a thorough and systematic analysis of masked face detection algorithms. With the help of examples, we have thoroughly examined and reviewed the studies done concerning face mask identification and techniques for masked face detection. Additionally, we compared and explained different masked face detection dataset types, libraries, and techniques. We also discussed the challenges with masked face detection and whether the researchers could overcome them. We have discussed and conducted a thorough evaluation of the accuracy, pros, and cons of various approaches by comparing their performance on multiple datasets. As a result, this study aims to give the researcher a broader viewpoint to aid him in finding patterns and trends in masked face detection in various COVID-19 contexts, overcoming challenges that are still present, and creating future algorithms for masked face detection that are more reliable and accurate.
   
     
 
       

Author Related Publications

  • Ehab Roshdy Mohamed, "SEMANTIC REPRESENTATION OF MUSIC DATABASE USING NEW ONTOLOGY-BASED SYSTEM", Journal of Theoretical and Applied Information Technology, 2020 More
  • Ehab Roshdy Mohamed, "Building a New Semantic Social Network Using Semantic Web-Based Techniques", ِASPG, 2021 More
  • Ehab Roshdy Mohamed, "New Graphical Ultimate Processor for Mapping Relational Database to Resource Description Framework", IEEE, 2022 More
  • Ehab Roshdy Mohamed, "Solving systems of nonlinear equations via conjugate direction flower pollination algorithm", inderscience, 2017 More
  • Ehab Roshdy Mohamed, "Cryptographic Accumulator-Based Scheme for Critical Data Integrity Verification in Cloud Storage", IEEE, 2019 More

Department Related Publications

  • Osama Mohamed Abdelsalam Ahmed Elkomy, "MT-nCov-Net: A Multitask Deep-Learning Framework for Efficient Diagnosis of COVID-19 Using Tomography Scans", IEEE, 2021 More
  • Osama Mohamed Abdelsalam Ahmed Elkomy, "Two-Stage Deep Learning Framework for Discrimination between COVID-19 and Community-Acquired Pneumonia from Chest CT scans.", ELSEVIER, 2021 More
  • Osama Mohamed Abdelsalam Ahmed Elkomy, "Efficient model for emergency departments: Real case study", Computers, Materials and ContinuaComputers, Materials and Continua, 2022 More
  • Ehab Roshdy Mohamed, "SEMANTIC REPRESENTATION OF MUSIC DATABASE USING NEW ONTOLOGY-BASED SYSTEM", Journal of Theoretical and Applied Information Technology, 2020 More
  • Khalied Mohamed Hosny, "SEMANTIC REPRESENTATION OF MUSIC DATABASE USING NEW ONTOLOGY-BASED SYSTEM", Journal of Theoretical and Applied Information Technology, 2020 More
Tweet