Zagazig University Digital Repository
Home
Thesis & Publications
All Contents
Publications
Thesis
Graduation Projects
Research Area
Research Area Reports
Search by Research Area
Universities Thesis
ACADEMIC Links
ACADEMIC RESEARCH
Zagazig University Authors
Africa Research Statistics
Google Scholar
Research Gate
Researcher ID
CrossRef
EFFECT OF MOLD CASTING PARAMETERS IN INTERFACE PROPERTIES OF IRON/ COPPER BIMETALLIC COMPOSITES BASED UPON AN ANCIENT QURANIC METAL MATRIX COMPOSITE (QMMC)
Faculty
Engineering
Year:
2023
Type of Publication:
ZU Hosted
Pages:
821–834
Authors:
Hossameldien Mohamed Salam Helmy
Staff Zu Site
Abstract In Staff Site
Journal:
International Journal of Metalcasting Springer
Volume:
18
Keywords :
EFFECT , MOLD CASTING PARAMETERS , INTERFACE PROPERTIES
Abstract:
The relation between iron/copper bimetallic composites has many challenges; one of the most important characteristics is their diffusion and its effect on the properties of the interface region. This paper studies the influence of casting parameters on the interface region of these bimetallic composites and compares it to observations on those of the Quranic metal matrix composites based on the Dhul-Qarnayn dam (Gog and Magog Wall). A different number of steel rods (one, two, and three) were placed in an alloy steel mold, then heated at different temperatures of 350, 450, 550, and 650 °C. After that, molten copper was poured over them into the mold, followed by different cooling rates (fast, medium, and slow). The properties of the interface region (microstructure, microhardness, and bonding strength) were investigated. The finite element model was carried out to obtain the temperature distribution through the specimen. The microhardness test results revealed that the high preheating temperature and high cooling rate give a high interface microhardness due to the formation of iron oxides and fine grains. The present experimental results show the highest bond strength between steel and copper, which was achieved when the temperature of the interface region reached the austenitic phase (γ-phase) and held it sufficiently to reach a successful substitutional diffusion mechanism. The bond strength between copper and steel in each casting parameter obtained experimentally was used to predict the tensile strength of the obtained bimetal composites numerically.
Author Related Publications
Hossameldien Mohamed Salam Helmy, "Effects of composite patching on cyclic crack tip deformation of cracked pinned metallic joints", Taylor & Francis Group, 2021
More
Hossameldien Mohamed Salam Helmy, "Intrinsic fracture toughness of fiber reinforced and functionally graded concretes: An innovative approach", sciencedirect, 2021
More
Hossameldien Mohamed Salam Helmy, "Flexural behavior of functionally graded concrete beams with different patterns", springer, 2021
More
Hossameldien Mohamed Salam Helmy, "Mechanical properties of sustainable concrete comprising various wastes", Springer, 2023
More
Hossameldien Mohamed Salam Helmy, "An Assessment of ASTM E1922 for Measuring the Translaminar Fracture Toughness of Laminated Polymer Matrix Composite Materials", MDPI, 2021
More
Department Related Publications
Ahmed Mohamed Hassan Ali Youssief, "Densification behavior and mechanical properties of niobium-oxide-doped alumina ceramics", Goller Verlag, 2013
More
Ahmed Mohamed Hassan Ali Youssief, "Influence of Ta2o5 DOPING ON THE MICROSTRUCTURE, physical and mechanical properties of 2-alumina ceramics", Goller Verlag, 2013
More
Amro Shehata Mohamed Shehata Fayed, "Morphological, mechanical, and thermal characterization of electrospun three‐dimensional graphite nanoplatelets/polystyrene ultra‐fine fibril composite fabrics", wileyonlinelibrary.com/journal/pc, 2021
More
جامعة المنصورة
جامعة الاسكندرية
جامعة القاهرة
جامعة سوهاج
جامعة الفيوم
جامعة بنها
جامعة دمياط
جامعة بورسعيد
جامعة حلوان
جامعة السويس
شراقوة
جامعة المنيا
جامعة دمنهور
جامعة المنوفية
جامعة أسوان
جامعة جنوب الوادى
جامعة قناة السويس
جامعة عين شمس
جامعة أسيوط
جامعة كفر الشيخ
جامعة السادات
جامعة طنطا
جامعة بنى سويف