An Assessment of a New Hyperbolic Shear Deformation Theory for the Free Vibration Analysis of Cosine Functionally Graded Doubly Curved Shells under Various Boundary Conditions

Faculty Engineering Year: 2024
Type of Publication: ZU Hosted Pages: 338–354
Authors:
Journal: Physical Mesomechanics Springer Volume: 27
Keywords : , Assessment , , , Hyperbolic Shear Deformation Theory , , Free    
Abstract:
This paper introduces a new shear deformation theory, employing the hyperbolic sine function, for exploring the free vibration properties of a novel functionally graded (FG) shell structure. The proposed theory ensures a parabolic distribution of shear strains and stresses across the thickness, with zero values at the top and bottom surfaces, eliminating the requirement for any shear correction factor. This is the first time such an approach has been utilized for studying this type of FG structure. The material properties are assumed to vary gradually across the thickness in the form of a trigonometric function. The proposed FG material stands out due to its excellent rigidity and smooth and continuous variation of the material components through the thickness. This composition has the potential to compensate for the deficiencies found in conventional FG sandwiches. Two types of functionally graded shells are considered: the trigonometric FG-A shell and the trigonometric FG-B shell. The governing equilibrium equations of the FG shell are derived in detail with the principle of virtual work and are solved analytically by the Galerkin method that can cover different boundary conditions. The proposed solution is constrained to rectangular and straight FG plates of uniform cross-section. A wide range of comparative studies is carried out to establish the accuracy and the performance of the present analytical model. A detailed parametric analysis is performed to highlight the influence of the material inhomogeneity parameter, geometry and various boundary conditions on the vibration response. The proposed model has an important role in the design of various vessels and shells
   
     
 
       

Author Related Publications

  • Mohammed Abdelmoniem Mohamed Eltaher , "Vibrations and stress analysis of rotating perforated beams by using finite elements method", Techno-Press, Ltd., 2021 More
  • Mohammed Abdelmoniem Mohamed Eltaher , "Free vibration of porous FG nonlocal modified couple nanobeams via a modified porosity model", Techno press, 2021 More
  • Mohammed Abdelmoniem Mohamed Eltaher , "Vibration of nonlinear graduation of nano-Timoshenko beam considering the neutral axis position", ScienceDirect, 2014 More
  • Mohammed Abdelmoniem Mohamed Eltaher , "Surface and thermal load effects on the buckling of curved nanowires", Sciencedirect, 2014 More
  • Mohammed Abdelmoniem Mohamed Eltaher , "Modeling of viscoelastic contact-impact problems", journal homepage: www.elsevier.com/locate/apm, 2009 More

Department Related Publications

  • Adel Fathy Meselhy Ibrahiem, "Effect of some manufacturing parameters on mechanical properties of extruded Al-alumina composites", لايوجد, 1900 More
  • Ashraf Abdelfattah Ali Hassanein, "A novel 3-D graphite structure from thermally stabilized electrospun MWCNTs/PAN nanofibril composite fabrics", International Journal of Advanced Manufacturing Technology, 2014 More
  • Amal Elhosaieny Meselhy Alshorbagy, "Free vibration characteristics of a functionally graded beam by finite element method", www.elsevier.com/locate/apm, 2010 More
  • Mohammed Abdelmoniem Mohamed Eltaher , "Static and buckling analysis of functionally graded Timoshenko nanobeams", www.elsevier.com, 2014 More
  • Tamer Ali Abdella Sebaee, "AN EXPERIMENTAL STUDY ON THE BOLTED JOINT CONNECTIONS IN GFRE [0/90]2S LAMINATES", Minoufiya University, 2009 More
Tweet