Enhancing connectivity and coverage in wireless sensor networks: a hybrid comprehensive learning-Fick’s algorithm with particle swarm optimization for router node placement

Faculty Engineering Year: 2025
Type of Publication: ZU Hosted Pages: 32
Authors:
Journal: Neural Computing and Applications Springer Volume:
Keywords : Enhancing connectivity , coverage , wireless sensor networks:    
Abstract:
Wireless Sensor Networks (WSNs) are essential for collecting and transmitting data in modern applications that rely on data, where effective network connectivity and coverage are crucial. The optimal placement of router nodes within WSNs is a fundamental challenge that significantly impacts network performance and reliability. Researchers have explored various approaches using metaheuristic algorithms to address these challenges and optimize WSN performance. This paper introduces a new hybrid algorithm, CFL-PSO, based on combining an enhanced Fick’s Law algorithm with comprehensive learning and Particle Swarm Optimization (PSO). CFL-PSO exploits the strengths of these techniques to strike a balance between network connectivity and coverage, ultimately enhancing the overall performance of WSNs. We evaluate the performance of CFL-PSO by benchmarking it against nine established algorithms, including the conventional Fick’s law algorithm (FLA), Sine Cosine Algorithm (SCA), Multi-Verse Optimizer (MVO), Salp Swarm Optimization (SSO), War Strategy Optimization (WSO), Harris Hawk Optimization (HHO), African Vultures Optimization Algorithm (AVOA), Capuchin Search Algorithm (CapSA), Tunicate Swarm Algorithm (TSA), and PSO. The algorithm’s performance is extensively evaluated using 23 benchmark functions to assess its effectiveness in handling various optimization scenarios. Additionally, its performance on WSN router node placement is compared against the other methods, demonstrating its competitiveness in achieving optimal solutions. These analyses reveal that CFL-PSO outperforms the other algorithms in terms of network connectivity, client coverage, and convergence speed. To further validate CFL-PSO’s effectiveness, experimental studies were conducted using different numbers of clients, routers, deployment areas, and transmission ranges. The findings affirm the effectiveness of CFL-PSO as it consistently delivers favorable optimization results when compared to existing methods, highlighting its potential for enhancing WMN performance. Specifically, CFL-PSO achieves up to a 66.5% improvement in network connectivity, a 16.56% improvement in coverage, and a 21.4% improvement in the objective function value when compared to the standard FLA
   
     
 
       

Author Related Publications

  • Amro Ahmed Ismail Morsy , "Improved Low Energy Adaptive Clustering Hierarchy in Wireless Sensor Network Routing Protocols", International Journal of Engineering and Technology, 2018 More
  • Amro Ahmed Ismail Morsy , "An Efficient Convolutional Neural Network Classification Model for Several Sign Language Alphabets", (The Science and Information Organization (SAI, 2023 More
  • Amro Ahmed Ismail Morsy , "Implementing and Measuring the Performance of PB, RR and PBRR Scheduling Algorithms on ATMega32A using FreeRTOS", IEEE, 2023 More
  • Amro Ahmed Ismail Morsy , "Elliptic tube free convection augmentation: An experimental and ANN numerical approach", ELSEVIER, 2019 More
  • Amro Ahmed Ismail Morsy , "Image processing and neural network technique for size characterization of gravel particles", Nature Publishing Group, 2024 More

Department Related Publications

  • Mira Magdy Sobhy Suliman, "COMPARISON BETWEEN HAAR WAVELET TRANSFORM, DCT AND A PROPOSED COLUMN-MEAN-METHOD BASED IRIS ENCODERS", جامعة الزقازيق-المجلة العلمية, 2014 More
  • Ahmed Mohamed Helmy Elsadiek, "Efficient and Sustainable Reconfiguration of Distribution Networks via Metaheuristic Optimization", IEEE, 2022 More
  • Sarah Khalil Mohamed Ibrahim, "Study of Climate Change Detection in North-East Africa Using Machine Learning and Satellite Data", IEEE, 2021 More
  • Ibrahiem Elsayed Mohamed Zedan, "Improved subspace identication with prior information using constrained least-squares", IET, 2011 More
  • Ahmed Mahmoud Abdelrahman Elanany, "Improved subspace identication with prior information using constrained least-squares", IET, 2011 More
Tweet