Red-Billed Blue Magpie Optimizer for Electrical Characterization of Fuel Cells with Prioritizing Estimated Parameters

Faculty Engineering Year: 2024
Type of Publication: ZU Hosted Pages:
Authors:
Journal: Technolgies MDPI Volume: 9
Keywords : Red-Billed Blue Magpie Optimizer , Electrical Characterization    
Abstract:
The red-billed blue magpie optimizer (RBMO) is employed in this research study to address parameter extraction in polymer exchange membrane fuel cells (PEMFCs), along with three recently implemented optimizers. The sum of squared deviations (SSD) between the simulated and measured stack voltages defines the fitness function of the optimization problem under investigation subject to a set of working constraints. Three distinct PEMFCs stacks models—the Ballard Mark, Temasek 1 kW, and Horizon H-12 units—are used to illustrate the applied RBMO’s feasibility in solving this challenge in comparison to other recent algorithms. The highest percentages of biased voltage per reading for the Ballard Mark V, Temasek 1 kW, and Horizon H-12 are, respectively, +0.65%, +0.20%, and −0.14%, which are negligible errors. The primary characteristics of PEMFC stacks under changing reactant pressures and cell temperatures are used to evaluate the precision of the cropped optimized parameters. In the final phase of this endeavor, the sensitivity of the cropped parameters to the PEMFCs model’s performance is investigated using two machine learning techniques, namely, artificial neural network and Gaussian process regression models. The simulation results demonstrate that the RBMO approach extracts the PEMFCs’ appropriate parameters with high precision.
   
     
 
       

Author Related Publications

  • Attia Abdelaziz Hussien Ali, "Artificial ecosystem-based optimiser to electrically characterise PV generating systems under various operating conditions reinforced by experimental validations", Wiley, 2021 More
  • Attia Abdelaziz Hussien Ali, "An Improved Artificial Jellyfish Search Optimizer for Parameter Identification of Photovoltaic Models", Multidisciplinary Digital Publishing Institute, 2021 More
  • Attia Abdelaziz Hussien Ali, "Parameters identification of PV triple-diode model using improved generalized normal distribution algorithm", Multidisciplinary Digital Publishing Institute, 2021 More
  • Attia Abdelaziz Hussien Ali, "Adaptive and efficient optimization model for optimal parameters of proton exchange membrane fuel cells: A comprehensive analysis", Elsevier, 2021 More
  • Attia Abdelaziz Hussien Ali, "Model parameters extraction of solid oxide fuel cells based on semi-empirical and memory-based chameleon swarm algorithm", Wiley, 2021 More

Department Related Publications

  • Mohamed Abdelfattah Hessien Anany Refaee, "Steady State Modeling and ANFIS Based Analysis of Self-Excited Induction Generator", Multi-Science Publishing Co. Ltd, 2014 More
  • Ahmed Mohamed Othman Abdelmaksoud, "Modification of UPFC Circuit to Enhance Dynamics Performance Using Soft Computing Selection", International Journal of Electrical Engineering (IIJEE), 2014 More
  • Ahmed Mohamed Othman Abdelmaksoud, "A New Optimization Approach for Maximizing the Photovoltaic Panel Power Based on Genetic Algorithm and Lagrange Multiplier Algorithm", Inter. Journal of Photoenergy, 2013 More
  • Ahmed Mohamed Othman Abdelmaksoud, "A New Evolutionary Algorithm for the Optimal Sizing of Stand-Alone Photovoltaic System Based on Genetic Algorithm", International Review of Electrical Engineering (IREE), 2013 More
  • Ahmed Fathy Mohamed Ali Ali, "Comparison among various energy management strategies for reducing hydrogen consumption in a hybrid fuel cell/supercapacitor/battery system", Elsevier, 2019 More
Tweet