A Bi-level optimization strategy for electric vehicle retailers based on robust pricing and hybrid demand response

Faculty Engineering Year: 2024
Type of Publication: ZU Hosted Pages: 129913
Authors:
Journal: Energy Elsevier Volume: 289
Keywords : , Bi-level optimization strategy , electric vehicle retailers    
Abstract:
The high penetration of electric vehicles (EVs) poses both opportunities and challenges for power systems. EV retailers, playing a critical role in the demand response mechanism, face market risks caused by uncertainties in electricity consumption and prices. To address the operational issues of large-scale EVs and tap the potential of EV retailers, a temporal and spatial domain-based optimization strategy is proposed, which is implemented on bi-level (referring to transmission and distribution grid networks). First, a physical scheduling model of the grid is established, consisting of a novel hybrid demand response mechanism considering the incentives of EV retailers and the retail electricity price of EV users, and a new robust retail electricity pricing strategy handling the uncertainties of EV behavior and the electric market. Then, a bi-level optimization strategy is presented: at the upper level, in the transmission network, based on the robust pricing strategy, a unit commitment model that coordinates the hybrid demand response with other distributed energy resources is designed to optimize load periods of EVs in the time domain; at the lower level, in the distribution network, an optimal power flow model is proposed to spatially dispatch the location of EV loads. The impacts of retail price profile, EV penetration, hybrid demand response mechanism, and EV load location are analyzed in ten tests using the IEEE 33 distribution network. Simulation results indicate that the robust pricing strategy can effectively handle uncertainties, the integration of the hybrid demand response mechanism into scheduling can ensure the benefits of all participants, and the bi-level optimization strategy can accommodate distributed energy resources temporally and spatially.
   
     
 
       

Author Related Publications

  • Mohamed Talaat Mohamed Mostafa, "Discharge characteristics of gliding arc plasma reactor with argon/nitrogen", Journal of Advances in Physics, 2015 More
  • Mohamed Talaat Mohamed Mostafa, "Use of Finite Element Method for the Numerical Analysis of Eddy Current Brake", IEEE, 2014 More
  • Mohamed Talaat Mohamed Mostafa, "A University-Industry Link in Egypt Using the Social Networks", IEEE, 2014 More
  • Mohamed Talaat Mohamed Mostafa, "New Experimental Study of an Injected Air Bubble Deformation in Dielectric Liquid under Applied High D.C. Voltage Using Photographic Recording", IEEE, 2003 More
  • Mohamed Talaat Mohamed Mostafa, "Pre-Breakdown Analysis during the Deformation of an Artificial Air Bubble in Transformer Dielectric Liquid under High DC Negative Applied Voltage", IEEE, 2005 More

Department Related Publications

  • Mahdy Mohamed Mahdy Mohamed Elareny, "Mahdi M. M. El - Arini Environmental Economic Dispatching Based on Artificial Networks", لايوجد, 1900 More
  • Mahdy Mohamed Mahdy Mohamed Elareny, "Mahdi M. M. El - Arini An Efficient Second Order Fast Load Flow Method in Rectangular Coordinates", لايوجد, 1900 More
  • Mahdy Mohamed Mahdy Mohamed Elareny, "Mahdi M. M. El - Arini An Efficient Reduced Order Controller for Inter - Connected Power Systems", لايوجد, 1900 More
  • Mahdy Mohamed Mahdy Mohamed Elareny, "Mahdi M. M. El - Arini An Efficient Method for Alleviating Line Overloads and Voltage Violations by Corrective Active and Reactive Rescheduling", لايوجد, 1900 More
  • Mahdy Mohamed Mahdy Mohamed Elareny, "Mahdi M. M. El - Arini Alleviation of Post Outaged Overloads by Line Switching", لايوجد, 1900 More
Tweet