Snap-through of functionally graded graphene origami-enabled auxetic metamaterial doubly curved nonlinear shells

Faculty Engineering Year: 2024
Type of Publication: ZU Hosted Pages:
Authors:
Journal: Mechanics Based Design of Structures and Machines Taylor & Francis Volume:
Keywords : Snap-through , functionally graded graphene origami-enabled auxetic    
Abstract:
The lightweight design of thin-walled curved structures as spherical shells are frequently implemented in architecture, aerospace, mechanical, automotive, nuclear, and defense structures. Under the transverse loads, shells may largely deform and hence snap from one equilibrium position to the other. Thus, this work aims to develop a mathematical model and computational solution to investigate the nonlinear bending and snap-through behavior of doubly curved auxetic metamaterial shell subjected to transversal loading, for the first time. The shell is composed of several layers through the shell thickness, each layer is manufactured from a copper (Cu) matrix reinforced with a specified weight fraction of graphene origami auxetic metamaterial (GOAM). The mechanical properties of the GOAM shell panel are presented and described by functions of the GOAM volume fraction and folding degree. Three types of GOAM-distributions are considered, which are U-type, X-type, and O-type. The theoretical framework of Kirchhoff–Love hypotheses for thin shells and von Karman type nonlinearity are used to derive the governing equations. The differential quadrature method (DQM) is implemented to discretize the space domain and convert the nonlinear partial differential equation to nonlinear algebraic equations in terms of displacement field. An efficient incremental iterative procedure is developed to solve the nonlinear equations and predict the snap-through behavior. A model conversion and validation with isotropic spherical shell is considered. Several numerical results are conducted considering the effects of changing GOAM content, distribution pattern, folding degree, and shell curvature and thickness. For panels exhibiting snap-through behavior, increasing the shell curvature leads to higher snap-through limiting load; however, the instability gap is enlarged.
   
     
 
       

Author Related Publications

  • Nazira Mohamed Mansour Mosa, "Exponential higher-order compact scheme for 3D steady convection–diffusion problem", sciencedirect, 2014 More
  • Nazira Mohamed Mansour Mosa, "EXPONENTIAL HIGHER-ORDER COMPACT SCHEME FOR STEADY INCOMPRESSIBLE NAVIER-STOKES EQUATIONS: STREAMFUNCTION-VORTICITY FORMULATION", conferrnce, 2013 More
  • Nazira Mohamed Mansour Mosa, "Numerical analysis of nonlinear free and forced vibrations of buckled curved beams resting on nonlinear elastic foundations", Elsevier, 2018 More
  • Nazira Mohamed Mansour Mosa, "Numerical analysis of nonlinear free and forced vibrations of buckled curved beams resting on nonlinear elastic foundations", international journal of nonlinear mechanics, 2018 More
  • Nazira Mohamed Mansour Mosa, "Periodic and nonperiodic modes of postbuckling and nonlinear vibration of beams attached to nonlinear foundations", Elsevier, 2019 More

Department Related Publications

  • Soliman Soliman Soliman Alieldien, "A first-order shear deformation finite element model for elastostatic analysis of laminated composite plates and the equivalent functionally graded plates", Ain Shams Engineering Journal, 2011 More
  • Soliman Soliman Soliman Alieldien, "Size-dependent analysis of functionally graded ultra-thin films", Structural Engineering and Mechanics, Vol. 44, No. 4 (2012) 431-448, 2012 More
  • Soliman Soliman Soliman Alieldien, "Bending Analysis of Ultra-thin Functionally Graded Mindlin Plates Incorporating Surface Energy Effects", International Journal of Mechanical Sciences, 2013 More
  • Soliman Soliman Soliman Alieldien, "Finite element analysis of functionally graded nano-scale films", Finite Elements in Analysis and Design, 2013 More
  • Soliman Soliman Soliman Alieldien, "Finite Element Analysis of the Deformation of Functionally Graded Plates under Thermomechanical Loads", Mathematical Problems in Engineering, 2013 More
Tweet