Biological control of nosemosis in Apis mellifera L. with Acacia nilotica extract

Faculty Science Year: 2024
Type of Publication: ZU Hosted Pages: 28340
Authors:
Journal: Scientific Reports Nature Volume: 14
Keywords : Biological control , nosemosis in Apis mellifera , with    
Abstract:
Nosemosis is one of the most devastating diseases of Apis mellifera (Honey bees) caused by the single-celled spore-forming fungi Nosema apis, N. ceranae and N. neumanii, causing a severe loss on the colony vitality and productivity. Fumagillin, a MetAP2 inhibitor, was a certified treatment for controlling nosemosis, nevertheless, due to its deleterious effects on honey bees and humans, it is prohibited. So, searching for novel biological agents with affordable selectivity to target Nosema species infecting Apis mellifera, with nil toxicity to bees and humans is the main objective of this study. Nosema species were isolated from naturally infected honey bees. The methanolic extracts of Acacia nilotica, Elaeis guineensis, and Catharanthus roseus were tested to selectively control the growth of Nosema spp of honeybees. The spores of Nosema species were molecularly and morphologically identified. Among the tested plant extracts, the methanolic extracts (0.1%) of A. nilotica had the most activity towards Nosema spp causing about 37.8 and 32.5% reduction in the spores’ load at 5- and 9-days post-infection, respectively, compared to the untreated control. At 0.1%, the A. nilotica methanolic extract exhibited the highest inhibitory effect for Nosema spores, without any obvious bee mortality. Catharanthus roseus displayed a reduction of spores by 27.02%, with bee mortality rate of 27.02%. At 1% for 5 dpi, the A. nilotica extracts led to 18.18% bee mortality, while the C. roseus extracts resulted in 100% mortality, as revealed from the toxicity and quantification bioassays. So, the extracts of A. nilotica and C. roseus had a significant effect in controlling the N. apis and N. ceranae titer compared to the infected untreated control at both time points. The titer of N. apis and N. ceranae was noticeably decreased by more than 80% and 90%, in response to A. nilotica, compared to the control. From the metabolic profiling by GC–MS analysis, the most frequent active compounds of A. nilotica were 2,4,6-trihy-droxybenzoic acid, 1,2-dihydroxybenzene, myristic acid, and linoleic acid. These compounds were analyzed in silico to assess their binding affinity to the ATP binding protein, methionine aminopeptidase and polar tube protein of Nosema species as target enzymes. The compound 2,4,6-trihydroxybenzoic acid had the lowest energy to bind with ATP binding protein, methionine aminopeptidase and polar tube protein of Nosema, followed by 1,2-dihydroxybenzene and myristic acid, compared to fumagilin. So, from the experimental and molecular docking analysis, the extracts of A. nilotica had the highest activity to attack the cellular growth machinery of Nosema species without an obvious effect to the honeybees, ensuring their prospective promising application.
   
     
 
       

Author Related Publications

  • Ahmed Heussein Mostafa, "Evaluation of the Curative and Protective Role of Fresh Chicory Juice in Treatment of Hepatic Fibrosis in Male Albino Rats", Scoups, 2021 More
  • Ahmed Heussein Mostafa, "Efficient biocontrol of Spodoptera littoralis by Aspergillus nidulans, an endophyte of Lantana camara", ٍSpringer, 2020 More
  • Ahmed Heussein Mostafa, "Synthesis and Biological Evaluation of Glycosides and AcyclicNucleosides Derived 2-Oxonicotinonitriles", Wiely, 2019 More
  • Ahmed Heussein Mostafa, "Novel Triazole-, Oxadiazole-, and Pyrazole-Nicotinonitrile Hybrids: Synthesis, DFT Study, Molecular Docking, and Antimicrobial Activity", ٍSpringer, 2022 More
  • Ahmed Heussein Mostafa, "Synthesis and biological evaluation of 2-Oxo/thioxoquinoxaline and 2-Oxo/thioxoquinoxaline-based nucleoside analogues", EBSCO, 2016 More

Department Related Publications

  • Mohamed Gamal Helmy Mohamed Abdelwahed, "Electronic Properties of Organic Complexes. 2. Reactive Azodyes", Spain, 1993 More
  • Mohamed Gamal Helmy Mohamed Abdelwahed, "Electrical Behaviour of some Azodye Mixed Ligand with Gd3+ and Er3+. b", Peru, 1994 More
  • Atef Mohamed AbdelHamid Ali Hassn, "heterocyclization of thiouracil derivative: synthesis of thiazolopyrimidines, tetrazolopyrimidines and triazolopyrimidines of potential biological activity", elsevier, 2015 More
  • Mohammed Aref Awad Allah Abu Zyd, "Synergistic positive effects of nano barium silicate on the hydration rate and phase composition of alkali-activated slag", Elsevier, 2022 More
  • Ahmed Abdelmoniem Ahmed Amer, "Synthesis and characterization of some calcium aluminate phases from nano-size starting materials", 0366-3175/© 2020 SECV. Published by Elsevier Espana, ˜ S.L.U, 2020 More
Tweet