Zagazig University Digital Repository
Home
Thesis & Publications
All Contents
Publications
Thesis
Graduation Projects
Research Area
Research Area Reports
Search by Research Area
Universities Thesis
ACADEMIC Links
ACADEMIC RESEARCH
Zagazig University Authors
Africa Research Statistics
Google Scholar
Research Gate
Researcher ID
CrossRef
Combustion and mass loss behavior and characteristics of a single biomass pellet positioning at different orientations in a fixed bed reactor
Faculty
Engineering
Year:
2023
Type of Publication:
ZU Hosted
Pages:
Authors:
Mohammed Anwar Mohamed Ali Ismaeil
Staff Zu Site
Abstract In Staff Site
Journal:
Biomass Conversion and Biorefinery Springer Link
Volume:
14
Keywords :
Combustion , mass loss behavior , characteristics , , single
Abstract:
This study aims to investigate the combustion characteristics and mass loss behaviors of rice straw and wheat straw biomass pellets experimentally in a laboratory fixed bed combustor under various operating conditions. High-speed photography was used to record images of the combustion process, and a sensitive balance was utilized for recording the particle mass history during the combustion process in addition to K-type thermocouples for temperature measurements. For both materials, the single pellet was exposed to various air temperatures and different flow rates of air. The orientation of the biomass pellet was positioned at various angles from 0 (horizontal), 30°, 45°, 60° (inclined), and 90° (parallel) to the hot air stream at different flow rates. Both glowing reactions and flameless ignition have been noticed in all experiments at all pellet orientations. All pellets experienced low and high luminosity volatiles without flames, followed by a bright radish color and short-lived combustion of the chars. Although the volatile contents of the two materials are identical, the volatile combustion duration of wheat straw (17–258 s) is less than that of rice straw (20–300 s), which could be due to differences in particle sizes, shapes, and structural compositions. The results also show that increased air temperatures lessen the time it takes for volatile and char to ignite and burn off. It also raises the temperature of surface ignition. Starting from the horizontal position and increasing the orientation angle of the pellet, the volatile and char ignition times increase up to 30° and then drop up to 90°, with angle 45° giving the lowest value. The same pattern was also noticed for volatile and char burnout times. The pellet horizontal position (0°) exhibits reduced combustion and mass loss (%) time intervals. The order of increasing the maximum temperature at the pellet surface was 30° > 60° > 90° angles. Increasing the air temperature reduces the times of char combustion, devolatilization, volatile burnout, and char burnout. As the air flow rate increases, the effect on the combustion parameters alternates between increasing and decreasing values.
Author Related Publications
Mohammed Anwar Mohamed Ali Ismaeil, "Transmission electron microscopy of carbon-coated and iron-doped Titania nanoparticles.", Nanotechnology, 2016
More
Mohammed Anwar Mohamed Ali Ismaeil, "Synthesis of TiO2 nanoparticles containing Fe, Si, and V using multiple diffusion flames and catalytic oxidation capability of carbon-coated nanoparticles", , Journal of Nanoparticle Research, 2016
More
Mohammed Anwar Mohamed Ali Ismaeil, "Synthesis of Titanium Dioxide Nanoparticles Using a Double-Slit Curved Wall-Jet Burner", Combustion Science and Technology, 2016
More
Mohammed Anwar Mohamed Ali Ismaeil, "Curved Wall-Jet Burner for Synthesizing Titania and Silica Nanoparticles", Proceedings of the Combustion Institute, 2014
More
Mohammed Anwar Mohamed Ali Ismaeil, "Thermal Fragmentation and Deactivation of Combustion-Generated Soot Particles", , Combustion and Flame, 2014
More
Department Related Publications
Mohamed Lotfy Elsayed Abdelkreem, "THERMAL PERFORMANCE OF FLAT PLATE HEAT SINK WITH ATTACHED HEAT SHIELD", Zagazig University, 2012
More
Mohamed Lotfy Elsayed Abdelkreem, "Effect of a Slotted Shield on Thermal and Hydraulic Performance of a Heat Sink", ASME, 2014
More
Saliem Abdelaziz Saliem Anose, "Role of hybrid nanoparticles on thermal, electrical conductivity, microstructure, and hardness behavior of nanocomposite matrix", Elsevier B.V., 2021
More
Saliem Abdelaziz Saliem Anose, "Numerical Investigation of Flow and Heat Transfer over a Shallow Cavity: Effect of Cavity Height Ratio", MDPI, 2021
More
Saliem Abdelaziz Saliem Anose, "Thermodynamic Analysis of Partitioned Combined Cycle using Simple Gases", MDPI, 2019
More
جامعة المنصورة
جامعة الاسكندرية
جامعة القاهرة
جامعة سوهاج
جامعة الفيوم
جامعة بنها
جامعة دمياط
جامعة بورسعيد
جامعة حلوان
جامعة السويس
شراقوة
جامعة المنيا
جامعة دمنهور
جامعة المنوفية
جامعة أسوان
جامعة جنوب الوادى
جامعة قناة السويس
جامعة عين شمس
جامعة أسيوط
جامعة كفر الشيخ
جامعة السادات
جامعة طنطا
جامعة بنى سويف