Thermal Decomposition and Combustion Characteristics of Biomass Materials Using TG/DTG at Different High Heating Rates and Sizes in the Air

Faculty Engineering Year: 2018
Type of Publication: ZU Hosted Pages:
Authors:
Journal: Environmental Progress & Sustainable Energy John Wiley & Sons, Inc Volume: 38
Keywords : Thermal Decomposition , Combustion Characteristics , Biomass Materials    
Abstract:
Thermogravimetric (TGA) analysis was used to study the thermal decomposition and oxidation, combustion characteristics, and kinetics of cotton stalks and sugarcane bagasse powder of various particle sizes under air from room temperature to 1000 oC at heating rates 25, 50, and 75 oC /min. It was observed that all the samples followed a two-stage reaction mechanism between 200 and 1000 oC clearly indicating regions of volatile oxidation and char combustion during thermal decomposition and oxidation. It was also found that heating rate, particle size, lignocellulosic composition, and gas flow types affect the thermal decomposition mechanism and kinetic parameter values of both materials. The kinetic parameters were determined using simple Distributed Activation Energy Model (DAEM) and three methods of model-free kinetics. It was found that average activation energy (Eav) for cotton stalks and bagasse for both bulk and different particle sizes ranged between 34–118 kJ/mol and 87–187 kJ/mol, respectively. Results also showed that the values of kinetic parameters obtained from all methods are in a good agreement and can be successfully used to understand the degradation mechanism of solid-state reaction of these biomass materials. Finally, a comparison between the thermal pyrolysis characteristics of both materials under inert (nitrogen) and air at a heating rate of 10 oC /min is presented and discussed.
   
     
 
       

Author Related Publications

  • Mohammed Anwar Mohamed Ali Ismaeil, "Transmission electron microscopy of carbon-coated and iron-doped Titania nanoparticles.", Nanotechnology, 2016 More
  • Mohammed Anwar Mohamed Ali Ismaeil, "Synthesis of TiO2 nanoparticles containing Fe, Si, and V using multiple diffusion flames and catalytic oxidation capability of carbon-coated nanoparticles", , Journal of Nanoparticle Research, 2016 More
  • Mohammed Anwar Mohamed Ali Ismaeil, "Synthesis of Titanium Dioxide Nanoparticles Using a Double-Slit Curved Wall-Jet Burner", Combustion Science and Technology, 2016 More
  • Mohammed Anwar Mohamed Ali Ismaeil, "Curved Wall-Jet Burner for Synthesizing Titania and Silica Nanoparticles", Proceedings of the Combustion Institute, 2014 More
  • Mohammed Anwar Mohamed Ali Ismaeil, "Thermal Fragmentation and Deactivation of Combustion-Generated Soot Particles", , Combustion and Flame, 2014 More

Department Related Publications

  • Mohamed Lotfy Elsayed Abdelkreem, "THERMAL PERFORMANCE OF FLAT PLATE HEAT SINK WITH ATTACHED HEAT SHIELD", Zagazig University, 2012 More
  • Mohamed Lotfy Elsayed Abdelkreem, "Effect of a Slotted Shield on Thermal and Hydraulic Performance of a Heat Sink", ASME, 2014 More
  • Saliem Abdelaziz Saliem Anose, "Role of hybrid nanoparticles on thermal, electrical conductivity, microstructure, and hardness behavior of nanocomposite matrix", Elsevier B.V., 2021 More
  • Saliem Abdelaziz Saliem Anose, "Numerical Investigation of Flow and Heat Transfer over a Shallow Cavity: Effect of Cavity Height Ratio", MDPI, 2021 More
  • Saliem Abdelaziz Saliem Anose, "Thermodynamic Analysis of Partitioned Combined Cycle using Simple Gases", MDPI, 2019 More
Tweet