Classifying the Vermicompost Production Stages Using Thermal Camera Data

Faculty Computer Science Year: 2023
Type of Publication: ZU Hosted Pages:
Authors:
Journal: IEEE Access Ieee Volume:
Keywords : Classifying , Vermicompost Production Stages Using Thermal Camera    
Abstract:
The procedure of processing the vermicompost production includes several stages, where the vermicompost material has different temperatures during these different stages. Thermal sensors play a key role in numerous fields, such as medical and agricultural applications. Thermal cameras can produce a thermal image or an array of values representing the array of sensory data. i.e., an array of temperatures. In this study, we proposed the first thermal imagery dataset of the vermicompost production process. The contributions of this work are two-fold using the proposed dataset. First, we framed the process of predicting the vermicompost production process as a classification problem. Second, we compared classifying the different stages of the process of vermicompost production based on two different input types, namely, thermal images and an array of temperatures. In other words, the classifier will be fed with an input (an image or an array of temperatures), and then the classifier will predict the vermicompost production stage. In this context, we utilized several machine and deep learning models as classifiers. For the utilized dataset, the study has been conducted on a set of images collected during the vermicompost production procedure which was collected every 14 days over 42 consecutive days, i.e., four classes. We proposed running a series of experiments to determine which input type yields better classification accuracy. The obtained results show that using thermal images for the sake of classifying the vermicompost production stages achieved higher accuracy, about 92%, in comparison to using the sensor array data, about 60%.
   
     
 
       

Author Related Publications

  • Ahmed Salah Mohamed Mostafa, "Artificial Intelligence and Machine Learning-Driven Decision-Making", Hindawi, 2021 More
  • Ahmed Salah Mohamed Mostafa, "Usages of Spark Framework with Different Machine Learning Algorithms", Hindawi, 2021 More
  • Ahmed Salah Mohamed Mostafa, "Efficient index-independent approaches for the collective spatial keyword queries", elsevier, 2021 More
  • Ahmed Salah Mohamed Mostafa, "A robust UWSN handover prediction system using ensemble learning", MDPI, 2021 More
  • Ahmed Salah Mohamed Mostafa, "Price Prediction of Seasonal Items Using Machine Learning and Statistical Methods", Tech Science Press, 2021 More

Department Related Publications

  • Ahmed Salah Mohamed Mostafa, "Lazy-Merge: A Novel Implementation for Indexed Parallel K-Way In-Place Merging", IEEE, 2016 More
  • Ibrahiem Mahmoud Mohamed Elhenawy, "A Review on the Applications of Neutrosophic Sets", Source: Journal of Computational and Theoretical Nanoscience, Volume 13, Number 1, January 2016, pp. 936-944(9), 2016 More
  • Mohammed Abdel Basset Metwally Attia, "A Review on the Applications of Neutrosophic Sets", Source: Journal of Computational and Theoretical Nanoscience, Volume 13, Number 1, January 2016, pp. 936-944(9), 2016 More
  • Mohammed Abdel Basset Metwally Attia, "A Review on the Applications of Neutrosophic Sets", Source: Journal of Computational and Theoretical Nanoscience, Volume 13, Number 1, January 2016, pp. 936-944(9), 2016 More
  • Mohammed Abdel Basset Metwally Attia, "A comparative study of cuckoo search and flower pollination algorithm on solving global optimization problems", emerald insight, 2017 More
Tweet