An Adaptive Jellyfish Search Algorithm for Packing Items with Conflict

Faculty Computer Science Year: 2023
Type of Publication: ZU Hosted Pages:
Authors:
Journal: Mathematics MDPI Volume:
Keywords : , Adaptive Jellyfish Search Algorithm , Packing Items    
Abstract:
The bin packing problem (BPP) is a classic combinatorial optimization problem with several variations. The BPP with conflicts (BPPCs) is not a well-investigated variation. In the BPPC, there are conditions that prevent packing some items together in the same bin. There are very limited efforts utilizing metaheuristic methods to address the BPPC. The current methods only pack the conflict items only and then start a new normal BPP for the non-conflict items; thus, there are two stages to address the BPPC. In this work, an adaption of the jellyfish metaheuristic has been proposed to solve the BPPC in one stage (i.e., packing the conflict and non-conflict items together) by defining the jellyfish operations in the context of the BPPC by proposing two solution representations. These representations frame the BPPC problem on two different levels: item-wise and bin-wise. In the item-wise solution representation, the adapted jellyfish metaheuristic updates the solutions through a set of item swaps without any preference for the bins. In the bin-wise solution representation, the metaheuristic method selects a set of bins, and then it performs the item swaps from these selected bins only. The proposed method was thoroughly benchmarked on a standard dataset and compared against the well-known PSO, Jaya, and heuristics. The obtained results revealed that the proposed methods outperformed the other comparison methods in terms of the number of bins and the average bin utilization. In addition, the proposed method achieved the lowest deviation rate from the lowest bound of the standard dataset relative to the other methods of comparison.
   
     
 
       

Author Related Publications

  • Ahmed Salah Mohamed Mostafa, "Artificial Intelligence and Machine Learning-Driven Decision-Making", Hindawi, 2021 More
  • Ahmed Salah Mohamed Mostafa, "Usages of Spark Framework with Different Machine Learning Algorithms", Hindawi, 2021 More
  • Ahmed Salah Mohamed Mostafa, "Efficient index-independent approaches for the collective spatial keyword queries", elsevier, 2021 More
  • Ahmed Salah Mohamed Mostafa, "A robust UWSN handover prediction system using ensemble learning", MDPI, 2021 More
  • Ahmed Salah Mohamed Mostafa, "Price Prediction of Seasonal Items Using Machine Learning and Statistical Methods", Tech Science Press, 2021 More

Department Related Publications

  • Ahmed Raafat Abass Mohamed Saliem, "BERT-CNN: A Deep Learning Model for Detecting Emotions from Text", Tech Science Press, 2021 More
  • Ibrahiem Mahmoud Mohamed Elhenawy, "BERT-CNN: A Deep Learning Model for Detecting Emotions from Text", Tech Science Press, 2021 More
  • Ahmed Raafat Abass Mohamed Saliem, "Using General Regression with Local Tuning for Learning Mixture Models from Incomplete Data Sets", ScienceDirect, 2010 More
  • Ahmed Raafat Abass Mohamed Saliem, "On determining efficient finite mixture models with compact and essential components for clustering data", ScienceDirect, 2013 More
  • Ahmed Raafat Abass Mohamed Saliem, "Unsupervised learning of mixture models based on swarm intelligence and neural networks with optimal completion using incomplete data", ScienceDirect, 2012 More
Tweet