Towards Efficient and Trustworthy Pandemic Diagnosis in Smart Cities: A Blockchain-Based Federated Learning Approach

Faculty Computer Science Year: 2023
Type of Publication: ZU Hosted Pages:
Authors:
Journal: Mathematics MDPI Volume: Volume 11
Keywords : Towards Efficient , Trustworthy Pandemic Diagnosis , Smart    
Abstract:
In the aftermath of the COVID-19 pandemic, the need for efficient and reliable disease diagnosis in smart cities has become increasingly serious. In this study, we introduce a novel blockchain-based federated learning framework tailored specifically for the diagnosis of pandemic diseases in smart cities, called BFLPD, with a focus on COVID-19 as a case study. The proposed BFLPD takes advantage of the decentralized nature of blockchain technology to design collaborative intelligence for automated diagnosis without violating trustworthiness metrics, such as privacy, security, and data sharing, which are encountered in healthcare systems of smart cities. Cheon–Kim–Kim–Song (CKKS) encryption is intelligently redesigned in BFLPD to ensure the secure sharing of learning updates during the training process. The proposed BFLPD presents a decentralized secure aggregation method that safeguards the integrity of the global model against adversarial attacks, thereby improving the overall efficiency and trustworthiness of our system. Extensive experiments and evaluations using a case study of COVID-19 ultrasound data demonstrate that BFLPD can reliably improve diagnostic accuracy while preserving data privacy, making it a promising tool with which smart cities can enhance their pandemic disease diagnosis capabilities.
   
     
 
       

Author Related Publications

  • Mohammed Abdel Basset Metwally Attia, "Discrete greedy flower pollination algorithm for spherical traveling salesman problem", Springer, 2019 More
  • Mohammed Abdel Basset Metwally Attia, "A New Hybrid Flower Pollination Algorithm for Solving Constrained Global Optimization Problems", Natural Sciences Publishing Cor., 2014 More
  • Mohammed Abdel Basset Metwally Attia, "A novel equilibrium optimization algorithm for multi-thresholding image segmentation problems", Springer London, 2021 More
  • Mohammed Abdel Basset Metwally Attia, "An efficient binary slime mould algorithm integrated with a novel attacking-feeding strategy for feature selection", Pergamon, 2021 More
  • Mohammed Abdel Basset Metwally Attia, "An efficient teaching-learning-based optimization algorithm for parameters identification of photovoltaic models: Analysis and validations", Pergamon, 2021 More

Department Related Publications

  • Noha Mohamed Ibrahiem Mohamed Hamza, "A constraint consensus memetic algorithm for solving constrained optimization problems", Taylor & Francis, 2014 More
  • Saber Mohamed, "A surrogate-assisted differential evolution algorithm with dynamic parameters selection for solving expensive optimization problems", IEEE, 2014 More
  • Saber Mohamed, "Differential Evolution Combined with Constraint Consensus for Constrained Optimization", IEEE, 2011 More
  • Mohammed Abdel Basset Metwally Attia, "An approach of TOPSIS technique for developing supplier selection with group decision making under type-2 neutrosophic number", Elsevier B.V., 2019 More
  • Mohammed Abdel Basset Metwally Attia, "Krill herd ‎algorithm based ‎on cuckoo ‎search for ‎solving ‎engineering ‎optimization ‎problems", Springer, 2019 More
Tweet