Efficient and Lightweight Convolutional Networks for IoT Malware Detection: A Federated Learning Approach

Faculty Computer Science Year: 2022
Type of Publication: ZU Hosted Pages:
Authors:
Journal: IEEE Internet of Things Journal IEEE Volume: Volume: 10
Keywords : Efficient , Lightweight Convolutional Networks , , Malware Detection:    
Abstract:
Over the past few years, billions of unsecured Internet of Things (IoT) devices have been produced and released, and that number will only grow as wireless technology advances. As a result of their susceptibility to malware, effective methods have become necessary for identifying IoT malware. However, the low generalizability and the nonindependently and identically distributed data (non-IID) still pose a major challenge to achieving this goal. In this work, a new federated malware detection paradigm, termed FED-MAL, is introduced to collaboratively train multiple distributed edge devices to detect malware. In FED-MAL, the malware binaries are transformed into an image format to lessen the impact on non-IID, and then a compact convolutional model, named AM-NET, is proposed to learn the malware patterns as an image recognition task. The compact nature of AM-NET makes it an appropriate choice for deployment on resource-constrained IoT devices. Following, a refined edge-based adversarial training is given in FED-MAL to empower generalizability and resistibility by generating adversarial samples from various participating clients. Experimental evaluation on publicly available malware data sets shows that the FED-MAL is efficacious, reliable, expandable, generalizable, and communication efficient.
   
     
 
       

Author Related Publications

  • Mohammed Abdel Basset Metwally Attia, "Discrete greedy flower pollination algorithm for spherical traveling salesman problem", Springer, 2019 More
  • Mohammed Abdel Basset Metwally Attia, "A New Hybrid Flower Pollination Algorithm for Solving Constrained Global Optimization Problems", Natural Sciences Publishing Cor., 2014 More
  • Mohammed Abdel Basset Metwally Attia, "A novel equilibrium optimization algorithm for multi-thresholding image segmentation problems", Springer London, 2021 More
  • Mohammed Abdel Basset Metwally Attia, "An efficient binary slime mould algorithm integrated with a novel attacking-feeding strategy for feature selection", Pergamon, 2021 More
  • Mohammed Abdel Basset Metwally Attia, "An efficient teaching-learning-based optimization algorithm for parameters identification of photovoltaic models: Analysis and validations", Pergamon, 2021 More

Department Related Publications

  • Saber Mohamed, "A surrogate-assisted differential evolution algorithm with dynamic parameters selection for solving expensive optimization problems", IEEE, 2014 More
  • Saber Mohamed, "Differential Evolution Combined with Constraint Consensus for Constrained Optimization", IEEE, 2011 More
  • mahmoud mohamed ismail ali, "AN EFFICIENT Hybrid Swarm Intelligence Technique for Solving Integer Programming", International Journal of Computers & Technology, 2013 More
  • mahmoud mohamed ismail ali, "A Hybrid Swarm Intelligence Technique for Solving Integer Multi-objective Problems", international journal of computer applications, 2014 More
  • mahmoud mohamed ismail ali, "An Improved Chaotic Flower Pollination Algorithm for Solving Large Integer Programming Problems", International Journal of Digital Content Technology and its Applications, 2014 More
Tweet