MT-nCov-Net: A Multitask Deep-Learning Framework for Efficient Diagnosis of COVID-19 Using Tomography Scans

Faculty Computer Science Year: 2021
Type of Publication: ZU Hosted Pages:
Authors:
Journal: IEEE Transactions on Cybernetics IEEE Volume: Volume: 53
Keywords : MT-nCov-Net: , Multitask Deep-Learning Framework , Efficient Diagnosis    
Abstract:
The localization and segmentation of the novel coronavirus disease of 2019 (COVID-19) lesions from computerized tomography (CT) scans are of great significance for developing an efficient computer-aided diagnosis system. Deep learning (DL) has emerged as one of the best choices for developing such a system. However, several challenges limit the efficiency of DL approaches, including data heterogeneity, considerable variety in the shape and size of the lesions, lesion imbalance, and scarce annotation. In this article, a novel multitask regression network for segmenting COVID-19 lesions is proposed to address these challenges. We name the framework MT-nCov-Net. We formulate lesion segmentation as a multitask shape regression problem that enables partaking the poor-, intermediate-, and high-quality features between various tasks. A multiscale feature learning (MFL) module is presented to capture the multiscale semantic information, which helps to efficiently learn small and large lesion features while reducing the semantic gap between different scale representations. In addition, a fine-grained lesion localization (FLL) module is introduced to detect infection lesions using an adaptive dual-attention mechanism. The generated location map and the fused multiscale representations are subsequently passed to the lesion regression (LR) module to segment the infection lesions. MT-nCov-Net enables learning complete lesion properties to accurately segment the COVID-19 lesion by regressing its shape. MT-nCov-Net is experimentally evaluated on two public multisource datasets, and the overall performance validates its superiority over the current cutting-edge approaches and demonstrates its effectiveness in tackling the problems facing the diagnosis of COVID-19.
   
     
 
       

Author Related Publications

  • Mohammed Abdel Basset Metwally Attia, "Discrete greedy flower pollination algorithm for spherical traveling salesman problem", Springer, 2019 More
  • Mohammed Abdel Basset Metwally Attia, "A New Hybrid Flower Pollination Algorithm for Solving Constrained Global Optimization Problems", Natural Sciences Publishing Cor., 2014 More
  • Mohammed Abdel Basset Metwally Attia, "A novel equilibrium optimization algorithm for multi-thresholding image segmentation problems", Springer London, 2021 More
  • Mohammed Abdel Basset Metwally Attia, "An efficient binary slime mould algorithm integrated with a novel attacking-feeding strategy for feature selection", Pergamon, 2021 More
  • Mohammed Abdel Basset Metwally Attia, "An efficient teaching-learning-based optimization algorithm for parameters identification of photovoltaic models: Analysis and validations", Pergamon, 2021 More

Department Related Publications

  • Mohammed Abdel Basset Metwally Attia, "A Review on the Applications of Neutrosophic Sets", Source: Journal of Computational and Theoretical Nanoscience, Volume 13, Number 1, January 2016, pp. 936-944(9), 2016 More
  • Mohammed Abdel Basset Metwally Attia, "A Review on the Applications of Neutrosophic Sets", Source: Journal of Computational and Theoretical Nanoscience, Volume 13, Number 1, January 2016, pp. 936-944(9), 2016 More
  • Zeenat Mohammed Ahmed Mohammed, "A Review on the Applications of Neutrosophic Sets", Source: Journal of Computational and Theoretical Nanoscience, Volume 13, Number 1, January 2016, pp. 936-944(9), 2016 More
  • Saber Mohamed, "Evolving the Parameters of Differential Evolution using Evolutionary Algorithms", Springer, 2014 More
  • Saber Mohamed, "A Comparative Study of Different Variants of Genetic Algorithms for Constrained Optimization", Springer, 2010 More
Tweet